Worksheet 2.6A, Rational functions MATH 1410 (SOLUTIONS)

For each of the rational functions given below, do the following:

- 1. Find the domain of the rational function.
- 2. Reduce the rational function to lowest terms, if possible.
- 3. Find the x- and y-intercepts of the graph of the rational function, if they exist.
- 4. Determine the location of any vertical asymptotes or holes in the graph, if they exist.
- 5. Analyze the end behavior of the rational function. Find the horizontal or slant asymptote, if one exists.
- 6. Use a sign diagram and plot additional points, as needed, to sketch the graph of the rational function.

* * *

1.
$$a(x) = \frac{2x^2 - 9}{x^2 - 9}$$

2. $b(x) = \frac{x}{x - 1}$
3. $c(x) = \frac{x + 3}{x - 2}$
4. $d(x) = \frac{(x + 1)(2x - 2)}{(x - 3)(x + 4)}$
5. $e(x) = \frac{(2x - 1)(x + 2)}{(2x + 3)(3x - 4)}$
6. $f(x) = \frac{x^2 - 1}{x^2 + x - 6}$
7. $g(x) = \frac{x^2 - 4}{3x^2 + x - 4}$
8. $h(x) = \frac{x^2 - 6x + 8}{x^2 - x - 12}$
9. $i(x) = \frac{x^2 - 9}{x^3 - 4x}$
10. $j(x) = \frac{2x + 1}{x^2 + x + 1}$

Solutions.

1. $a(x) = \frac{2x^2 - 9}{x^2 - 9}$ has domain all real numbers except ±3 so, in interval notation, the domain is

$$(-\infty, -3) \cup (-3, 3) \cup (3, \infty).$$

The rational function has zeroes when $x = \pm \frac{3}{\sqrt{2}}$.

Its *y*-intercept occurs when y = 1.

Vertical asymptotes are x = 3 and x = -3.

y=2 is a horizontal asymptote.

Here is a graph of the curve, along with the two vertical asymptotes:

2. $b(x) = \frac{x}{x-1}$ has domain all real numbers except 1 so, in interval notation, the domain is

$$(-\infty,1)\cup(1,\infty).$$

The rational function intersects the axes at the origin.

It has a vertical asymptote x = 1 and y = 1 is a horizontal asymptote.

Here is a graph of the curve, along with the one vertical asymptote:

3. $c(x) = \frac{x+3}{x-2}$ has domain all real numbers except 2 so, in interval notation, the domain is

$$(-\infty,2)\cup(2,\infty).$$

The rational function has zeroes when x = -3.

Its *y*-intercept occurs when $y = -\frac{3}{2}$.

Vertical asymptotes are x = 2; y = 1 is a horizontal asymptote.

Here is a graph of the curve, along with the one vertical asymptote:

4. $d(x) = \frac{(x+1)(2x-2)}{(x-3)(x+4)}$ has domain all real numbers except -4,3 so, in interval notation, the domain is

$$(-\infty, -4) \cup (-4, 3) \cup (3, \infty).$$

The rational function has zeroes when x = -1 or x = 1.

Its *y*-intercept occurs when $y = \frac{1}{6}$.

Vertical asymptotes are x = 3 and x = -4.

y = 2 is a horizontal asymptote.

Here is a graph of the curve, along with the two vertical asymptotes:

5. $e(x) = \frac{(2x-1)(x+2)}{(2x+3)(3x-4)}$ has domain all real numbers except $-\frac{3}{2}, \frac{4}{3}$ so, in interval notation, the domain is

$$(-\infty, -\frac{3}{2}) \cup (-\frac{3}{2}, \frac{4}{3}) \cup (\frac{4}{3}, \infty).$$

The rational function has zeroes when $x = \frac{1}{2}, x = -2$. Its *y*-intercept occurs when $y = \frac{1}{3}$. Vertical asymptotes are $x = -\frac{3}{2}$ and $x = \frac{4}{3}$. $y = \frac{1}{3}$ is a horizontal asymptote.

Here is a graph of the curve, along with the two vertical asymptotes:

6. $f(x) = \frac{x^2 - 1}{x^2 + x - 6}$ has domain all real numbers except -3, 2 so, in interval notation, the domain is

$$(-\infty, -3) \cup (-3, 2) \cup (2, \infty).$$

The rational function has zeroes when $x = \pm 1$. Its *y*-intercept occurs when $y = \frac{1}{6}$. Vertical asymptotes are x = 2 and x = -3. y = 1 is a horizontal asymptote.

Here is a graph of the curve, along with the two vertical asymptotes:

7. $g(x) = \frac{x^2 - 4}{3x^2 + x - 4}$ has domain all real numbers except $-\frac{4}{3}$, 1 so, in interval notation, the domain is (

$$-\infty, -\frac{4}{3}) \cup (-\frac{4}{3}, 1) \cup (1, \infty).$$

The rational function has zeroes when $x = \pm 2$.

Its *y*-intercept occurs when y = 1.

Vertical asymptotes are x = 1 and $x = -\frac{4}{3}$.

 $y = \frac{1}{3}$ is a horizontal asymptote.

Here is a graph of the curve, along with the two vertical asymptotes:

8. $h(x) = \frac{x^2 - 6x + 8}{x^2 - x - 12}$ (See the class notes.)

9. $i(x) = \frac{x^2 - 9}{x^3 - 4x}$ has domain all real numbers except $\pm 2, 0$ so, in interval notation, the domain is

$$(-\infty, -2) \cup (-2, 0) \cup (0, 2) \cup (2, \infty).$$

The rational function has zeroes when $x = \pm 3$. It has no y-intercept since x = 0 is a vertical asymptote. Other vertical asymptotes are x = 2 and x = -2.

y = 0 is a horizontal asymptote. Here is a graph of the curve, along with the three vertical asymptotes:

10. $j(x) = \frac{2x+1}{x^2+x+1}$ has domain all real numbers since the denominator is never zero. (In interval notation the domain is $(-\infty, \infty)$.)

The rational function has zero $x = -\frac{1}{2}$

Its y-intercept occurs when y = 1.

It has no vertical asymptotes and y = 0 is a horizontal asymptote.

Here is a graph of the curve:

