Operations with Polynomials

What is a Polynomial?

These are the parts of a polynomial.
Integer

Definition: A polynomial, $P(x)$, is a sum of multiples of nonnegative integer powers of a variable.

A polynomial in standard form is written in exponent order, highest to lowest power.
A polynomial function of degree $\mathrm{n}, P_{\mathrm{n}}(x)$, may be referred to by one of the following names:

Degree	Name
0	Constant
1	Linear
2	Quadratic
3	Cubic
4	Quartic
5	Quintic
n	$\mathrm{n}^{\text {th }}$ degree

Terms	Name
1	Monomial
2	Binomial
3	Trinomial
>3	Polynomial

A term is a single product of constants and variables.
Two terms are like if and only if they have the same variables with the same exponents.
The degree of a monomial is the sum of the exponents of all of its variables.
The degree of a polynomial is the degree of the highest term of the polynomial.
The coefficient is the constant part of a term.
The leading coefficient is the coefficient of the term of highest degree.
A zero of a function, $f(x)$ is a number, a, such that $f(\mathrm{a})=0$.
A root of a polynomial, $P(x)$, is a number, r , such that $P(\mathrm{r})=0$. (A zero of the polynomial.) If $f(x)$ and $g(x)$ are two functions such that $p(x)=f(x) g(x)$, then f and g are factors of p.
If a function $p(x)$ can be written as $p(x)=f_{1}(x) f_{2}(x) \cdots f_{\mathrm{k}}(x)$, then $f_{1}(x) f_{2}(x) \cdots f_{\mathrm{k}}(x)$ is a factorization of $p(x)$.
A linear factor is a factor of the form $x-\mathrm{a}$, for some constant a .
If a function, $p(x)$, can be factored as $p(x)=(x-\mathrm{a})^{\mathrm{k}} f(x)$ where x - a is not a factor of $f(x)$, then $x-\mathrm{a}$ is a factor of multiplicity k . If $\mathrm{k}=1$, then $x-\mathrm{a}$ is a simple factor of $p(x)$.
The Remainder Theorem: The remainder when dividing a polynomial, $P(x)$, by $x-\mathrm{a}$ is $P(\mathrm{a})$.
The Factor Theorem: x - a is a factor of polynomial P if and only if $P(a)=0$.
The Rational Root Theorem: If $P(x)$ is a polynomial with integer coefficients, then the only possible rational roots of $P(x)$ are of the form:

$$
\mathrm{r}=\frac{\text { factor of constant term }}{\text { factor of leading coefficient }}
$$

A polynomial is completely factored when it is written as a product of linear factors.

Operations with Polynomials

To add polynomials, add like terms only.
To subtract polynomials, change the signs and add.
To multiply two polynomials, use the distributive law and multiply each part of the second polynomial with every part of the first polynomial.

The space of all polynomials is closed under addition, subtraction and multiplication. That is, each results in another polynomial.

The Binomial Theorem: The expansion of the binomial $(x+y)^{\mathrm{n}}$ is given by

$$
x^{\mathrm{n}}+\mathrm{a}_{1} x^{\mathrm{n}-1} y+\mathrm{a}_{2} x^{\mathrm{n}-2} y^{2}+\mathrm{a}_{3} x^{\mathrm{n}-3} y^{3}+\ldots+\mathrm{a}_{\mathrm{n}-1} x y^{\mathrm{n}-1}+\mathrm{a}_{\mathrm{n}} y^{\mathrm{n}},
$$

where each term is of degree n and the coefficients can be calculated as

$$
\mathrm{a}_{\mathrm{k}}=\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Each term is from the $\mathrm{k}^{\text {th }}$ position of the $\mathrm{n}^{\text {th }}$ row of Pascal's Triangle, counting from 0 .

