Geometry SMART Packet

Triangle Proofs (SSS, SAS, ASA, AAS)

Student:	Date:	Period:
	Standards	
G.G.27	Write a proof arguing from a given hypothe	sis to a given conclusion.
G.G.28	3 Determine the congruence of two triangles by using one of the five congruence techniques (SSS, SAS, ASA, AAS, HL), given sufficient information about the sides and/or angles of two congruent triangles.	

Note: We can <u>NOT</u> prove triangles with AAA or SSA!!

How to set up a proof:

9 Most Common Properties, Definitions & Theorems for Triangles

Directions: Check which congruence postulate you would use to prove that the two triangles are congruent.

Practice. *Fill in the missing reasons*

6. Given: $\angle YLF \cong \angle FRY$, $\angle RFY \cong \angle LFY$ **Prove:** $\triangle FRY \cong \triangle FLY$

Statement	Reason
1. $\angle YLF \cong \angle FRY$	
2. $\angle RFY \cong \angle LFY$	
3. $\overline{FY} \cong \overline{FY}$	
4. $\triangle FRY \cong \triangle FLY$	

7. Given: $\overline{LT} \cong \overline{TR}$, $\angle ILT \cong \angle ETR$, $IT \parallel ER$

Prove: $\triangle LIT \cong \triangle TER$

Statement	Reason
1. $\overline{LT} \cong \overline{TR}$	
2. $\angle ILT \cong \angle ETR$	
3. <i>IT</i> <i>ER</i>	
4. $\angle LTI \cong \angle ERT$	
5. $\triangle LIT \cong \triangle TER$	

Statement	Reason
1. <i>C</i> is midpoint of \overline{BD}	
2. $\overline{AB} \perp \overline{BD}$ and $\overline{BD} \perp \overline{DE}$	
3. $\overline{BC} \cong \overline{CD}$	
4. $\angle BCA \cong \angle ECD$	
5. $\angle ABC$ and $\angle EDC$ are right angles	
6. $\angle ABC \cong \angle EDC$	
7. $\triangle ABC \cong \triangle EDC$	

9. Given: $\overline{BA} \cong \overline{ED}$ *C* is the midpoint of \overline{BE} and \overline{AD}

Prove: $\triangle ABC \cong \triangle DEC$

Statement	Reason
1. $\overline{BA} \cong \overline{ED}$	
2. <i>C</i> is the midpoint of \overline{BE} and \overline{AD}	
3. $\overline{BC} \cong \overline{EC}$	
4. $\overline{AC} \cong \overline{DC}$	
5. $\triangle ABC \cong \triangle DEC$	

Statement	Reason
1. $\overline{BC} \cong \overline{DA}$	
2. \overline{AC} bisects $\angle BCD$	
3. $\angle BCA \cong \angle DCA$	
4. $\overline{AC} \cong \overline{AC}$	
5. $\triangle ABC \cong \triangle CDA$	

Practice. Write a 2-column proof for the following problems.

11.

Given: $\angle ADB$ and $\angle CDB$ are right angles $\angle A \cong \angle C$ Prove: $\triangle ADB = \triangle CDB$

12. Given: *C* is the midpoint of *BD* and *AE*

13. Given: $\overline{AB} \cong \overline{CB}$, \overline{BD} is a median of \overline{AC} **Prove:** $\triangle ABD \cong \triangle CBD$

Regents Practice

14. Which condition does *not* prove that two triangles are congruent?

(1) $SSS \cong SSS$ (2) $SSA \cong SSA$ (3) $SAS \cong SAS$ (4) $ASA \cong ASA$

15. In the diagram of $\triangle ABC$ and $\triangle DEF$ below, $\overline{AB} \cong \overline{DE}$, $\angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove $\triangle ABC \cong \triangle DEF$? (1) SSS (2) SAS (3) ASA (4) HL

16. In the accompanying diagram of triangles BAT and FLU, $\angle B \cong \angle F$ and $\overline{BA} \cong \overline{FL}$.

Which statement is needed to prove $\triangle BAT \cong \triangle FLU$? (1) $\angle A \cong \angle L$ (2) $\overline{AT} \cong \overline{LU}$ (3) $\angle A \cong \angle U$ (4) $\overline{BA} \parallel \overline{FL}$

17. In the accompanying diagram, \overline{HK} bisects \overline{IL} and $\angle H \cong \angle K$.

What is the most direct method of proof that could be used to prove $\triangle HIJ \cong \triangle KLJ$?

- (1) $HL \cong HL$
- (2) $SAS \cong SAS$
- (3) $AAS \cong AAS$
- (4) $ASA \cong ASA$

18. Complete the partial proof below for the accompanying diagram by providing reasons for steps 3, 6, 8, and 9.

Given: \overline{AFCD} , $\overline{AB} \perp \overline{BC}$, $\overline{DE} \perp \overline{EF}$, $\overline{BC} \parallel \overline{FE}$, $\overline{AB} \cong \overline{DE}$ Prove: $\triangle ABC \cong \triangle DEF$

Statements	Reasons
1 AFCD	1 Given
$2 \overline{AB} \bot \overline{BC}, \overline{DE} \bot \overline{EF}$	2 Given
3 $\angle B$ and $\angle E$ are right angles.	3
$4 \angle B \cong \angle E$	4 All right angles are congruent.
$5 \overline{BC} \parallel \overline{FE}$	5 Given
$6 \ \angle BCA \cong \angle EFD$	6
$7 \overline{AB} \simeq \overline{DE}$	7 Given
$8 \ \triangle ABC \cong \triangle DEF$	8