
It is difficult to walk through daily life without being able to see geometric 
transformations in your surroundings. Notice how the leaves of plants, for example, 
are almost a mirror image of themselves across their center. Also take note of how 
the leaves get smaller as they travel up the plant while still keeping their similar 
shape. Both of these traits are examples of geometric transformations. What else 
shows these traits in nature?

During This Chapter
• You will investigate translations, reflections, 

rotations, and dilations of figures both on and off 
the coordinate plane.

• You will apply multiple transformations to a 
preimage and identify the transformations 
applied to an image.

• You will investigate and identify the types and 
properties of symmetry.

Application
You use transformations in space all the time without 
realizing it. The Earth moves through an elliptical 
orbit that is described by a rotation. A school bus 
moving down the street is changing its position 
without altering its other properties, an example of a 
rigid transformation. In this section, you will learn how 
to describe transformations algebraically and 
determine their geometric characteristics.

Chapter 5
Transforming Shapes



Section 5.1

Translations
Objectives

• Determine the congruence of a preimage and an image under a 
translation

• Use coordinate function notation to describe and apply translations on 
the coordinate plane

• Use prime notation to denote transformation points

New Vocabulary
• Transformation 
• Preimage
• Image
• Prime notation
• Translation
• Translation vector
• Coordinate function notation
• Rigid transformation

Although regulation basketball hoops are 10 ft off the ground, many have the 
ability to have their height lowered in order to accommodate younger players 
or beginners just learning the skills. When the hoop is lowered, nothing 
changes other than the location off the ground. The backboard, rim diameter, 
and net remain the same size and dimensions. Imagine if a similar movement 
occurred on a coordinate plane. How can this shift be described?
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Translation
Look at △ ABC in Figure 5.1-1. Notice that next to it is a copy of itself. Because it is in a different location, the second triangle is 
not exactly the same as the first one. It is a transformation of the original triangle. A transformation is a function that maps a set to 
another set or itself. These modifications can include changes in the figure’s position, orientation, shape, or size.

The preimage of a transformation is the original figure before it is transformed. In this example, △ ABC is the preimage. The 
image is the figure after it has been transformed. In this example, △ A′ �B′�C′� is the image. Note that point A' (pronounced “A 
prime”) corresponds to point A, B' corresponds to B, and C' corresponds to C. This system of naming transformed points by 
following their label with the prime symbol is called prime notation. If the image is transformed again, then a double prime is 
used to label each point in the second image. For example, A in the preimage becomes A' in the image, and that then becomes A′�′� 
in the second image. The second transformation would result in △ A′ �′�B′�′�C′�′�.

In this example, △ ABC has been moved to a different location without any change in its size or 
orientation. A translation occurs when every point on an object is shifted by the same distance and in the 
same direction. △ ABC has been translated because each point in the preimage has been shifted up and to 
the right by the same amount. The result is an image that is congruent to the preimage and in the same 
orientation.

The process of translation is shown in 
Animation 5.1-1. Note that the entire shape 
moves as a unit, so every part of it moves the 
same distance and direction. The distance and 
direction by which a figure is translated is 
known as the translation vector. The translation 
vector can be represented as an arrow, as it is 
for the shape in Animation 5.1-1. Every part of 
the object is shifted by the distance and in the 
direction shown by the arrow.

5.1 - Translations

Figure 5.1-1 A transformation has been made to triangle 
ABC, changing its position.

Animation 5.1-1 In a translation, every part of the 
preimage is shifted the same distance and direction.
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Translation on the Coordinate Plane
Any translation on the coordinate plane can be represented as a shift in the x-direction and a shift in the 
y-direction. Figure 5.1-2 shows △ DEF and its image, which is a translation of the preimage. Note that 
each point on the triangle has been translated three units to the right and two units up. In terms of 
coordinates, the image was created by adding 3 to each x-value and 2 to each y-value of the preimage.

One way to specify that △ DEF should be translated by this vector is by writing a function that 
describes the operations that should be done on x and y for each point in the figure. Coordinate function 
notation is a way of describing in ordered pair form the operations that should be done on each point in 
order to transform a figure. The translation of △ DEF three units to the right and two units up can be 
written in coordinate function notation as (x, y) → (x + 3, y + 2). This notation states that adding 3 to 
each x-value and 2 to each y-value of the preimage will produce the desired image.

Some types of transformations produce 
translations, and others do not. The 
transformation (x, y) → (2x, 2y) is shown in 
Figure 5.1-3 for □ GHJK. Notice that point G 
does not move, but the other points move away 
from the origin. The result is a square twice as 
large as the preimage. For the following 
reasons, this transformation is not a translation: 
the vertices do not all follow the same vector, 
and the image is not the same size as the 
preimage.

5.1 - Translations

Figure 5.1-2 The triangle is translated three units to the 
right and two units up.

Figure 5.1-3 Because the vertices are shifted by 
different amounts and in different directions, this 
transformation is not a translation.
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Using Coordinate Function Notation to Determine Translations
The transformation (x, y) → (−x, − y), shown for △ LMN in Figure 5.1-4, is not a translation either. 

Although the image is the same size as the preimage, it is in a different orientation. Each vertex is 
shifted down and to the left, but they are shifted by different distances.

The transformation shown in Figure 5.1-5 could be produced by a translation. Each vertex in the 
preimage is shifted the same distance and direction, as shown by the arrows. Notice that the arrows are 
all the same length and point in the same direction.

Since translating a figure involves shifting each point the same way both horizontally and vertically, 
any translation can be described by the function (x, y) → (x + h, y + k), where h and k are the horizontal 

and vertical components of the translation vector. That is, the figure is shifted h units to the right and k 
units upward. A negative value for h indicates a leftward shift, and a negative value for k indicates a 
downward shift.

For example, consider the rectangle shown in Figure 5.1-6. It has undergone the translation 

(x, y) → (x + 3, y − 2). Notice that shifting the bottom-left vertex from T to T' required adding 3 to the  
x-value and subtracting 2 from the  
y-value. Similarly, for each point (x, y) 

on the preimage, the corresponding 
point on the image is (x + 3, y − 2).

5.1 - Translations

Figure 5.1-4 Because the vertices 
are shifted by different amounts, this 
transformation is not a translation.

Figure 5.1-5 This transformation 
could be produced by a translation.

Figure 5.1-6 For any point (x, y) on 
the preimage, the corresponding 
point on the image is (x + 3, y − 2).
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Example problem" " Draw the preimage used to create △ A′ �B′�C′� by the transformation (x, y) → (x − 2, y + 1).

Analyze" " " The problem gives an image of a triangle as well as the transformation used to produce the image. It  
" " " " asks for a drawing of the preimage.

Formulate" " " The question asks for the original coordinates of the figure before the translation. First, the effects of  
" " " " the transformation by using the inverse operation of the one provided in the coordinate function  
" " " " notation of the transform. For each vertex of the image, add 2 to its x-coordinate and subtract 1 from  
" " " " its y-coordinate to find the corresponding coordinate of the preimage.

Determine" " " A(−3 + 2, − 1 − 1)" " " " Add 2 to the x-coordinate, and subtract 1 from the y-coordinate.
" " " " A(−1, − 2)
" " " " B(−1 + 2, 3 − 1)" " " " Add 2 to the x-coordinate, and subtract 1 from the y-coordinate.
" " " " B(1, 2)
" " " " C(1 + 2, − 1 − 1)" " " " Add 2 to the x-coordinate, and subtract 1 from the y-coordinate.
" " " " C(3, − 2)
" " " " " Graph triangle ABC on a coordinate plane.

Justify" " " Because the image is formed by subtracting 2 from each x-coordinate and adding 1 to each y-coordinate of the preimage, the  
" " " " reverse operations were followed to obtain the preimage from the image.

Evaluate" " " Reversing the operations from the transformation function provided an efficient way to obtain the preimage. The answer is  
" " " " reasonable because the image is congruent to the preimage.

5.1 - Translations
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Any translation on the coordinate plane can be represented as a shift in the x-direction and a shift in the 
y-direction. In this virtual manipulative, you will create an image and use coordinate function notation 
to translate it across the coordinate plane by adjusting the notation or by dragging.

You should have been able to translate a shape across a coordinate plane by adjusting the coordinate 
function notation or by dragging. Notice how, no matter where the image is being translated, the 
distance between each preimage point and image point are equal and remain so with every translation.

1.1 - TranslationsVirtual Manipulative - Image Translation
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Properties of Translations
Because the process of translation involves shifting every point on a figure the same distance and 
direction, it produces an image that has the same size, shape, and orientation as the preimage. A rigid 
transformation is a transformation in which the image is congruent to the preimage. A translation is one 
type of rigid transformation.

Not every rigid transformation is a translation. Figure 5.1-7 shows an image that is congruent to its 
preimage but is in a different orientation. This is a rigid transformation because the figures have the 
same shape and size. However, because the image and preimage have different orientations, it is not a 
translation.

Look at the figure and its translation shown in Figure 5.1-8. Because translations produce congruent 
images, △ XYZ and △ X′ �Y′�Z′� are congruent. However, it is not only the triangles that are congruent 

but also their individual parts. X′ �Y′� is a translation of XY, so these segments are congruent. Similarly, 
Y′�Z′� is congruent to YZ, and X′ �Z′� is congruent to XZ.

Jump to Distance in the Coordinate Plane

Not only are the segments in the image 
congruent to the segments in the preimage, but 
the angles are also congruent. For example, ∠X′ � 
is congruent to ∠X. It is possible to identify the 
congruent parts as a result of the prime notation 
even without looking at the figure because the 
prime notation identifies the corresponding 
parts of the two figures. Corresponding parts of 
congruent figures are always congruent.

Jump to Congruent Angles

5.1 - Translations

Figure 5.1-7 This image is a rigid transformation, but 
not a translation, of the preimage.

Figure 5.1-8 Each part of triangle X’Y’Z’ is congruent to 
the corresponding part of triangle XYZ.
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Example problem" " Determine whether CD and C′�D′� are parallel.

Analyze" " " The problem shows a preimage and an image produced by a transformation. It asks whether C′�D′� on  
" " " " the image is parallel to CD on the preimage.

Formulate" " " Calculate the slope of CD and of C′�D′�. Compare the slopes to see whether they are the same.

Determine" " " m =
y2 − y1
x2 − x1

" " " " Write the slope formula.

" " " " mCD = 0 − 4
2 − 3 "" " " Plug in coordinates from points C and D.

" " " " mCD = −4
−1 " " " " Simplify.

" " " " mCD = 4

" " " " mC′�D′� =
−2 − 2
−1 − 0 " " " Plug in coordinates from points C and D.

" " " " mC′�D′� =
−4
−1 " " " " Simplify.

" " " " mC′�D′� = 4

" " " " mCD = mC′ �D′�" " " " Compare the two slopes.

Justify" " " Lines or segments are parallel if and only if they have the same slope. Segments CD and C′�D′� have the same slope, so they  
" " " " are parallel.

Evaluate" " " Calculating the slopes provided a precise method for determining whether the segments were parallel. The calculation  
" " " " confirmed the similar appearance of the slopes on the diagram.

5.1 - Translations



Section 5.2

Reflections
Objectives

• Determine the congruence of a preimage and image under a reflection
• Apply reflections in the coordinate plane using a line of reflection
• Use coordinate function notation to describe and apply reflections across 

the x- and y-axis

New Vocabulary
• Reflection
• Line of reflection

When we wake up in the morning and begin to get ready for school, most of 
us will take a glance in the mirror. Your reflection in the mirror appears to be 
the same distance away from the mirror as you are. If you look at your 
reflection as if it were a person looking at you, which hand does the person 
appear to use? How would you create a reflection? What if the mirror were a 
line? 
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Reflection Across a Line
A reflection is a transformation in which one object is a mirror image of another or, in other words, in 
which an object has been flipped over a certain line. The original geometric shape is called a preimage, 
and the reflected image is the image or reflection. If a perpendicular line is drawn from each vertex of a 
preimage to the line over which it is being reflected, each vertex in the image will be the same distance 
away on that same perpendicular. This is true for every point in the preimage, but mapping the vertices 
simplifies determining these points in the image.

Any line can be used to flip the original shape over, and it is the line that acts as the “mirror.” In Figure 
5.2-1 the original triangle, △ ABC, has been reflected over the y-axis, creating △ A′ �B′�C′�. Each point has 
been moved perpendicularly across the y-axis so that it is the same distance from the line on the other 
side. In this way, the y-axis is the mirror, or line of reflection. A line of reflection is the line that an object 
is reflected over. This means that a point that has been reflected is the mirror image on the other side of 
the line of reflection.

A line of reflection does not have to be a 
vertical or horizontal line. In Figure 
5.2-2, a trapezoid has been reflected over 
the provided line. From each original 
vertex, a perpendicular line has been 
drawn to the line of reflection, and that 
distance has been measured. At the 
same distance on the opposite side of 
the line of reflection is the reflected 
point.

5.2 - Reflections

Figure 5.2-1 The triangle in quadrant I is the reflected 
image of the triangle in quadrant II.

Figure 5.2-2 A line of reflection can be in any direction.
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When a Point Falls on the Line of Reflection
There is a special circumstance should a point fall on the line of reflection. Imagine holding a penny 
above a piece of metal that has a mirror finish on it. A reflection of the penny is seen until the penny sits 
on the mirror. At that point, the reflection cannot be seen. The same is true with a line of reflection. A 
point that is located on the line of reflection will not appear to have a reflection because the original 
point is getting in the way. Another way to think of this is that the point and the reflection are the same. 

All other points besides those directly on the line of reflection will be moved perpendicularly across the 
line of reflection the same distance away from the line as the preimage. Figure 5.2-3 illustrates this case: 
two points, B and C, are not on the x-axis, which is acting as the line of reflection, and one point, A, is 
directly on the x-axis. The two points not on the x-axis have a reflection different from the original point 
in the preimage, whereas the point sitting directly on the x-axis acts as its own reflection.

5.2 - Reflections

Figure 5.2-3 If a point is on the actual line of reflection, 
it will not move during a reflection transformation.
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Reflection in the Coordinate Plane
When reflecting across a line in the coordinate plane, special attention can be paid to the coordinates 
and the relationship between the coordinates of the preimage and image. More specifically, a 
relationship exists between the coordinates of the preimage and image. If the y-axis is the line of 
reflection, as it is in Figure 5.2-1, the y-coordinate of the new point remains the same, but the x-
coordinate of the new point changes to the opposite sign.

In Figure 5.2-4, the preimage is □ABCD. The coordinates for each vertex are given. Suppose the line of 
reflection is not the y-axis but is instead the line x = 3. Just as when reflecting over the y-axis, the  
y-coordinates will remain the same, but the x-coordinates will need to move the same distance on the 
other side of the line x = 3. Thus, the vertex 
(−1, 0) will become (7, 0). The  
y-coordinate, 0, remains the same. Since 
the point (−1, 0) is four units from the 
line x = 3, it will need to move four 
units to the right of that line to (7, 0) .  
The point (−2, 0) is five units to the left 
of the line x = 3. Moving it five units to 
the right will make it become (8, 0). 
Using this same process, (−2, 1) 
becomes (8, 1), and (−1, 1) becomes 
(7, 1).

5.2 - Reflections

Figure 5.2-4 The reflection of a figure over a vertical 
line will keep the same y-coordinates, but the  
x-coordinates will change based upon their distance 
from the line of reflection.

Figure 5.2-1 The triangle in quadrant I is the reflected 
image of the triangle in quadrant II.
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Example problem" " Given △ ABC and its reflection △ A′�B′�C′�, determine the equation of the line of reflection. 

Analyze" " " The problem says to find the equation of the line for the line of reflection given a preimage  
" " " " and image.

Formulate" " " Because the line of reflection is halfway between the preimage and image, find the  
" " " " midpoints of the segments joining the corresponding points. Then, using two of these  
" " " " points, find the slope and then the y-intercept in order to get the equation of the line.

Determine" " " Pick two pairs of corresponding points: (–2,2) and (2,0) and (–1,4) and (3,2). 

" " " " –2 + 2
2 = 0 and 

2 + 0
2 = 1, so this midpoint is (0,1) and is located on the y-axis.

" " " " –1 + 3
2 = 1 and 

4 + 2
2 = 3, so this midpoint is (1,3).

" " " " Finding the slope yields 
3 − 1
1 − 0 = 2.

Justify" " " Plugging the slope into the slope-intercept form gives the equation y = 2x + 1. This process  
" " " " is verified by examining the y-intercept of the graph and checking the slope between two  
" " " " points on the graph by counting up and over between the two points.

Evaluate" " " Using the midpoints of the segments connecting the vertices from the pre-image to the  
" " " " image gave a reasonable way to determine the equation of the line. If the reflection had been  
" " " " a horizontal or vertical reflection, only one of the midpoints would have been necessary  
" " " " because the slope would already have been known.

5.2 - Reflections
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Using Coordinate Notation to Describe Reflections
When reflecting across any axis, coordinate notation is used to describe what the reflection does to the 
vertices. For the reflection over the y-axis, P(x, y) → P′�(–x, y). This notation shows that the y-coordinates 

remain the same and the x-coordinate becomes the opposite. If the x-axis is the line of reflection, the x-
coordinate of the new point remains the same, but the y-coordinate of the new points becomes opposite 
in sign, P(x, y) → P′�(x, –y), as illustrated in Figure 5.2-5.

Likewise, if a figure is reflected across the line y = x, then the x- and y-coordinates will switch places, 
giving P(x, y) → P′�(y, x), as illustrated in Figure 5.2-6.

5.2 - Reflections

Figure 5.2-5 If an object is reflected across the x-axis, 
then the x-coordinate remains the same and the  
y-coordinate becomes its opposite.

Figure 5.2-6 If an object is reflected over the line y = x, 
then the x- and y-coordinates will switch places in the 
reflection.
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Example problem" " △ ABC was reflected across the line y = x. Given △ A′ �B′�C′�, find  
" " " " the coordinates for △ ABC.

Analyze" " " The problem gives the reflection. If the line of reflection is known  
" " " " to be y = x, find the coordinates for the preimage.

Formulate" " " Because reflecting over the line y = x swaps the x- and  
" " " " y-coordinates, to get the coordinates for the preimage, each x- and "
" " " " y-coordinate must be switched.

Determine" " " (2, –3) → (–3, 2)
" " " " (1, –1) → (–1, 1)
" " " " (4, –2) → (–2, 4)

Justify" " " The coordinates for the preimages are A(–3,2), B(–1,1), and C(–2,4).  
" " " " This process is verified by switching the x- and y-coordinates for  
" " " " each vertex in the image. 

Evaluate" " " Knowing the rules about what happens to coordinates when they  
" " " " are reflected over y = x, the x-axis, and the y-axis helps with this  
" " " " problem. Plotting the points of △ ABC demonstrates  
" " " " reasonableness.

5.2 - Reflections
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When reflecting an image across axes on a coordinate plane, the relationship between the coordinates of 
the preimage and image can be seen in the coordinate notation. In this virtual manipulative, you will be 
able to draw a geometric image and reflect it over the x- and y-axis.

As you applied reflections of your drawn image, you should have been able to see how the coordinate 
notation reflected those changes. And while you only able to reflect over the x- and y-axis, you should 
have discovered that reflecting over both axes at the same time allowed you to essentially reflect over 
the function y = x.

Virtual Manipulative - Image Reflection



Chapter 5 - Transforming Shapes 207 Section complete

Properties of Reflections
Notice that for each preimage and image in a reflection, the figures were the same size and shape. The 
figures, if possible, could still be folded over on top of one another for a perfect fit. Thus, the only 
change that occurred was the orientation and location of the figure. This type of transformation is 
considered a rigid transformation or isometry, which means the preimage and image are congruent. 
Other transformations that fall under the category of rigid transformations include rotations and 
translations, making these transformations isometries as well. A reflection is referred to as an opposite 
isometry because the points of the image are in the opposite order of those in the preimage. 

Because of this congruence, it should be noted specifically what is maintained between the image and 
the preimage. Distance is preserved, meaning the distance between points remains the same. Also, all 
angle measures remain the same. Parallelism is maintained; that is, if two segments were parallel in the 
preimage, they will remain parallel in the image. Collinearity is also maintained in that points remain 
on the same lines. Finally, midpoints are maintained in that midpoints in the preimage are mapped to 
the midpoints in the image. What is not preserved is the orientation. Because of the nature of a 
reflection, the points will be in opposite order, as illustrated in Figure 5.2-7.

5.2 - Reflections

Figure 5.2-7 Reflections maintain many 
properties; however, orientation is not being 
maintained causing the vertices to appear in 
opposite order.



Section 5.3

Rotations
Objectives

• Determine the congruence of a preimage and image under a rotation
• Use a ruler and protractor to construct rotations
• Use coordinate function notation to describe and apply rotations on the 

coordinate plane

New Vocabulary
• Rotation
• Center of rotation
• Angle of rotation

As an analog clock runs, the hands constantly move, changing the directions 
in which they point. In the course of one minute, the second hand rotates 
360° and faces all possible directions in the plane. The words “clockwise” and 
“counterclockwise,” which are used to describe the direction of rotation, come 
from the motion of clock hands. Do the shape and size of the hands change 
as they move? Is there any point on the hands that does not move?
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Rotation About a Point
A rotation is a transformation in which each point on a preimage except the center turns through a 
specified angle around a certain point while maintaining the same distance from that point. The point 
around which the preimage rotates is called the center of rotation. The angle through which it rotates is 
called the angle of rotation.

Figure 5.3-1 shows the rotation of a shape. The blue arrow shows the path that the shape travels as it 
rotates. The center of rotation is at the intersection of the red segments, and the angle made by this 
intersection is the angle of rotation. Notice that each point on the image is the same distance from the 
center of rotation as the corresponding point on the preimage.

Objects can be rotated in different 
directions. Suppose that a problem asks 
for triangle ABC, shown in Figure 5.3-2, 
to be rotated by 90°. The preimage can 
be rotated either clockwise or 
counterclockwise. Rotating 90° 
clockwise produces image A'B'C', and 
rotating 90° counterclockwise produces 
image A'' B'' C''. Angles in math are 
usually measured counterclockwise, so 
if a direction is not specified, the 
rotation is assumed to be 
counterclockwise. Triangle A'B'C' can 
be considered either a 270° rotation or a 
90° clockwise rotation.

5.3 - Rotations

Figure 5.3-1 Each point on the image of a rotated 
shape is the same distance from the center of rotation 
as the corresponding point on the preimage.

Figure 5.3-2 Triangle ABC can be rotated in either 
direction, but a 90° rotation with no direction specified 
results in image A''B''C''.
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Rotating Polygons Using a Protractor
A polygon can be rotated through any angle with a ruler and protractor. First, center the protractor on 
the center of rotation and line up one vertex of the figure with the 0° line. Second, place a mark at the 
desired angle of rotation. Third, use the ruler to measure the distance between the center of rotation and 
the vertex of the preimage. Finally, align the ruler between the center of rotation and the mark made 
with the protractor, and mark the image vertex the measured distance from the center of rotation. 
Animation 5.3-1 illustrates how these steps are used to locate the rotation of a point.

Jump to Degrees

5.3 - Rotations

Animation 5.3-1 A ruler and protractor are used to rotate one vertex of a triangle 
through a 120° angle.
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Example problem" " Rotate quadrilateral ABCD 60° around point R.

Analyze" " " The problem gives a diagram of a quadrilateral and asks for a diagram  
" " " " of the image produced when the quadrilateral is rotated around point R.

Formulate" " " Center a protractor on point R, and mark a point 60° counterclockwise  
" " " " from point A. Then, use a ruler to measure the distance from the center  
" " " " of rotation to that vertex, and copy that distance toward the point  
" " " " marked with the protractor. Repeat the process for the other three  
" " " " vertices.

Determine

Justify" " " Each vertex of the image was found by measuring the correct angle of  
" " " " rotation with a protractor and measuring the correct distance from the  
" " " " center of rotation with a ruler.

Evaluate" " " Using the protractor and ruler provided an accurate way to locate the  
" " " " image position of each vertex. The answer is reasonable because each  
" " " " point of the image is the same distance from the center of rotation as the  
" " " " corresponding point of the preimage, and each point has undergone a  
" " " " 60° counterclockwise rotation.

5.3 - Rotations



Chapter 5 - Transforming Shapes 212 Section continues

Rotation in the Coordinate Plane
It is possible to produce certain rotations using the coordinates of the vertices of the preimage. The most 
straightforward of these rotations have rotation angles of 90°, 180°, or 270°. Because each vertex of the 
preimage rotates in a predictable way around the center of rotation, the corresponding image positions 
can be calculated.

Point A in Figure 5.3-3 is two units to the right of point R, which is the center of rotation. Suppose that 
point A needs to be rotated by 90° around point R. The image A' will still be two units from R, but it 
will be above R instead of to the right. Rotating 90° again produces point A'', which is to the left of R, 
and a third 90° rotation produces A''', which is below R.

Suppose that triangle ABC, shown in 
Figure 5.3-4, needs to be rotated 90° 
around point R. Point A, which is two 
units to the right of the center of rotation, 
will produce an image two units above 
the center, at (2, 5). Point B is four units to 

the right of the center and one unit above 
it. Following the counterclockwise 
rotation for both horizontal and vertical 
differences produces an image four units 
above the center of rotation and one unit 
to its left, at (1, 7). Similarly, since point C 
is four units to the right and one unit 
below the center of rotation, its image will 
be four units above it and one unit to the 
right, at (3, 7).

5.3 - Rotations

Figure 5.3-3 A series of 90° rotations causes 
coordinates to the right of the center of rotation to go 
above it, then to the left, then below, then back to the 
right.

Figure 5.3-4 The coordinates of the vertices of the 
image triangle can be found from the coordinates of the 
preimage and the center of rotation.
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Calculating Coordinate Positions of Points
Formulas can be derived for calculating the coordinate positions of points that have been rotated 
through 90°, 180°, or 270° angles. The x-coordinate of the image is the x-coordinate of the center of 
rotation (xR) plus the difference between the y-coordinates of the preimage (y) and the center of rotation 

(yR). A similar formula describes the y-coordinate of the image. The result is the function 

(x, y) → (xR + yR − y, yR + x − xR), which describes a 90° rotation where the center of rotation is at 

(xR, yR). A 180° rotation is described by the function (x, y) → (2xR − x, 2yR − y), and a 270° rotation is 

described by the function (x, y) → (xR + y − yR, yR + xR − x). These formulas are shown in Table 5.3-1.

5.3 - Rotations

Table 5.3-1 The formulas for 90°, 180°, and 270° rotations are shown in coordinate 
function notation.

Rotation Function

90° (x, y) → (xR + yR – y,yR + x – xR)

180° (x, y) → (2xR – x, 2yR – y)

270° (x, y) → (xR + y – yR, yR + xR – x)
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Example problem" " Determine the coordinates of the images of triangle DEF after it has been rotated around  
" " " " point R by 90°, 180°, and 270°.

Analyze" " " The problem gives the coordinates of each vertex of a triangle as well as the center of rotation. It  
" " " " asks for the coordinates of each vertex when the triangle undergoes rotations of 90°, 180°, and  
" " " " 270°.

Formulate" " " For each rotation, use the corresponding rotation formula for each vertex in order to calculate the  
" " " " x- and y-coordinates of the corresponding vertex of the image.

Determine" " " First, determine the coordinates of the image rotated 90°. 

" " " " (x, y) → (xR + yR − y, yR + x − xR)" " " Write the 90° rotation formula.

" " " " (2, 4) → (1 + 4 − 4, 4 + 2 − 1)" " " " Plug in the coordinates for D.
" " " " (2, 4) → (1, 5)" " " " " " Simplify.

" " " " (2, 2) → (1 + 4 − 2, 4 + 2 − 1)" " " " Plug in the coordinates for E.
" " " " (2, 2) → (3, 5)" " " " " " Simplify.

" " " " (4, 2) → (1 + 4 − 2, 4 + 4 − 1)" " " " Plug in the coordinates for F.
" " " " (4, 2) → (3, 7)" " " " " " Simplify.
" " " " Next, determine the coordinates of the image rotated 180°.

" " " " (x, y) → (2xR − x, 2yR − y)" " " " Write the 180° rotation formula.

" " " " (2, 4) → (2(1) − 2, 2(4) − 4)" " " " Plug in the coordinates for D.

" " " " (2, 4) → (0, 4)" " " " " " Simplify.

5.3 - Rotations
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" " " " (2, 2) → (2(1) − 2, 2(4) − 2)" " " " Plug in the coordinates for E.

" " " " (2, 2) → (0, 6)" " " " " " Simplify.

" " " " (4, 2) → (2(1) − 4, 2(4) − 2)" " " " Plug in the coordinates for F.

" " " " (4, 2) → (−2, 6)" " " " " " Simplify.

" " " " Finally, determine the coordinates of the image rotated 270°.

" " " " (x, y) → (xR + y − yR, yR + xR − x)" " " Write the 270° rotation formula.

" " " " (2, 4) → (1 + 4 − 4, 4 + 1 − 2)" " " " Plug in the coordinates for D.
" " " " (2, 4) → (1, 3)" " " " " " Simplify.
" " " " (2, 2) → (1 + 2 − 4, 4 + 1 − 2)" " " " Plug in the coordinates for E.
" " " " (2, 2) → (−1, 3)" " " " " " Simplify.
" " " " (4, 2) → (1 + 2 − 4, 4 + 1 − 4)" " " " Plug in the coordinates for F.
" " " " (4, 2) → (−1, 1)" " " " " " Simplify.

Justify" " " When the rotation formulas were followed, the images formed do in fact appear as rotations  
" " " " of the preimage when plotted on a coordinate plane.

Evaluate" " " The formulas provide a straightforward way to determine the coordinates of each image  
" " " " vertex. The answer is reasonable because each image appears to be a rotation of the  
" " " " preimage.

5.3 - Rotations
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The most straightforward rotations of geometric figures have rotation angles of 90°, 180°, or 270°. In this 
virtual manipulative, you will be able to draw your own geometric figure and rotate it across a 
coordinate plane in both clockwise and counterclockwise directions in 90º increments. All rotations will 
use the origin as the center of rotation.

You should have been able to rotate any drawn figure across the coordinate plan in 90º increments in 
both directions. You should have also noticed how the rotations followed a circular path. It would make 
sense, then, that a rotation of 360º lands the image right back over the preimage.

Virtual Manipulative - Image Rotation
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Properties of Rotations
When a figure is rotated, how it is positioned changes while its shape and size do not. As a result, the 
image is congruent to the preimage. Rotation is an example of a rigid transformation because the shape 
and size of the rotating object do not change. Figure 5.3-5 shows a rectangle that has been rotated 
around a point. Notice that each side of rectangle ABCD is congruent to the corresponding side of 
rectangle A'B'C'D' and that the angles in the preimage are congruent to the angles in the image.

Sometimes, the center of rotation is at the center of the rotating object. In this case, that object spins 
around its own center. Consider the example of a spinning top. As the top spins, each point on it 
remains equally distant from the center of the top. Because of the top’s symmetry, its appearance does 
not change even as it rotates. The earth, shown in Animation 5.3-2, is another example of an object 
whose basic shape does not appear to change as it rotates around its own center.

5.3 - Rotations

Figure 5.3-5 The image and preimage of a rotation have 
congruent corresponding parts.

Animation 5.3-2 The earth’s shape and size do not 
change as it rotates around its own center.



Section 5.4

Dilations
Objectives

• Determine the image of 
a figure in a plane after a 
dilation, given the center 
and scale factor

• Use coordinate notation 
to describe dilations in 
the coordinate plane with 
the center of dilation at 
the origin

• Use the image of a 
figure after a dilation to 
determine the preimage

New Vocabulary
• Dilation
• Scale factor
• Center of dilation
• Similarity

A photograph is a common item that is made in different sizes for varying reasons. The same picture can be made into a 4 × 6, 6 × 9, or 8 × 12 in. 
print. The image is still the same, but everything about it has either gotten larger or smaller. What needs to happen to a 4 × 6 picture to make it into 
an 8 × 12? What has happened to a 6 × 9 picture to make it a 4 × 6? What operations are being performed? 
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Dilations
A dilation is a uniform enlargement or reduction of a preimage around a given point. The ratio of the 
image size to the preimage size is known as the scale factor (k). If k > 1, then the dilation is an 
enlargement. If 0 < k < 1, then the dilation is a reduction. The center of dilation is a static point about 
which all the other points in the figure are enlarged or reduced. Suppose the center of dilation is C. If P 

is a point that is not located at the center of dilation, then P' lies on CP. Its distance from C is k times the 
distance CP, or CP′�= k(CP). This is illustrated in Figure 5.4-1.

Animation 5.4-1 shows how a dilation is performed on a preimage to produce an image. Notice that the 
distances from the center of dilation to the vertices of the preimage are measured and then multiplied 
by a scale factor. In this case, the scale factor is 2. If d is the distance from the center of dilation to a 
certain vertex of the preimage, then measuring a distance 2d from the center and placing a new vertex at 
that point creates the corresponding vertex in the image.

A dilation is a type of uniform scaling, which means that it is a transformation that preserves similarity 
but not congruence. All corresponding sides of a preimage and image of a dilated figure have the same 
proportion, and all angles are equal. The only things that change about the figure are its size and 
position. 

5.4 - Dilations

Figure 5.4-1 If CP = 3 and k = 2, then CP′�= 6 because 
CP′�= k(CP).

Animation 5.4-1 A dilation is created by measuring the 
distance from the center of dilation to each vertex and 
then multiplying that distance by the scale factor to find 
the distance to the vertices of the image.
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Example problem" " Draw the image of the figure after a dilation about point P by a  
" " " " scale factor of 0.5.

Analyze" " " The problem presents a polygon and asks for its image formed by a  
" " " " dilation. The scale factor is 0.5, and the center of dilation is at point P.

Formulate" " " Draw a ray from P toward each vertex of the figure. Then, use a ruler to  
" " " " measure the distance to each vertex from point P. Finally, locate the new  
" " " " vertices by multiplying 0.5 by each of these distances and marking the  
" " " " transformed vertex that distance from P on the corresponding ray.

Determine" " " " " " " Draw a ray from P toward  
" " " " " " each vertex.

" " " " " " " "
" " " " " " Measure the distance  
" " " " " " from P to each vertex.

5.4 - Dilations



Chapter 5 - Transforming Shapes 221 Problem complete

" " " " " " " Multiply each distance by 0.5, and draw  
" " " " " " " the image vertex that distance from P  
" " " " " " " along the same ray as the corresponding  
" " " " " " " preimage vertex.

Justify" " " The image was determined by calculating the required distance from the center of dilation  
" " " " to each vertex and then by measuring that distance from the center to place the vertex  
" " " " accordingly.

Evaluate" " " Using a ruler to measure distances from the center provided a way to create an accurate  
" " " " dilation as long as the measurements were taken carefully. The answer can be verified by  
" " " " measuring each distance from point P to each point in the preimage and making sure each  
" " " " of those distances is half of the distance from P to the corresponding point in the image.

Typically, because the image is not the same size as the preimage, a dilation is not considered an isometry. In order for a dilation 
to be an isometry, the scale factor must be exactly 1. In this case, each point of the image maps directly onto the corresponding 
point of the preimage. As a result, the image is not only congruent to the preimage but also is in the same position and 
orientation.

5.4 - Dilations
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Dilation in the Coordinate Plane
A dilation in the coordinate plane centered at the origin is found by multiplying the coordinates by the 
scale factor (k). In coordinate notation, this is represented as (x, y) → (kx, ky).

Example problem" " Graph the image produced if △ ABC is dilated about the origin  
" " " " by a scale factor of 3.

Analyze" " " The problem asks for the image of △ ABC after a dilation with a  
" " " " scale factor of 3 centered at the origin.

Formulate" " " Multiply the x- and y-coordinates of each vertex by 3, and then  
" " " " graph the new figure.

Determine" " " A(0, 2) → A′�(0 ⋅ 3, 2 ⋅ 3)" " " " Multiply each  
" " " " " " " " " " " coordinate of A by 3.
" " " " A′�= (0, 6)
" " " " B(–2, –2) → B′�(–2 ⋅ 3, –2 ⋅ 3)" " " Multiply each  
" " " " " " " " " " " coordinate of B by 3.
" " " " B′ �= (–6, –6)
" " " " C(2, –2) → C′�(2 ⋅ 3, –2 ⋅ 3)" " " " Multiply each  
" " " " " " " " " " " coordinate of C by 3.
" " " " C′ �= (6, –6)

Justify" " " Because the dilation is centered at the origin, multiplying each  
" " " " coordinate by the scale factor transformed each point so that it  
" " " " was dilated by an amount equal to the scale factor.

Evaluate" " " Multiplying the coordinates by the scale factor provided an  
" " " " accurate way to determine the exact position of the image. The  
" " " " answer is reasonable because the scale factor greater than 1  
" " " " produced an image larger than the preimage.

5.4 - Dilations
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Centers of Dilations Other Than the Origin
If the center of dilation is not at the origin, then the image cannot be found simply by multiplying each 
coordinate by the scale factor. In these cases, the displacement from a point in the preimage from the 
center of dilation must be found first. Then the displacement is multiplied by the scale factor, and this 
value is added to the center to find the location of the point in the image. Repeating this process for 
each vertex produces the image of the dilation. This process is described by the transformation 

(x, y) → (xc + n(x − xc), yc + n(y − yc)), where the terms with the subscript c refer to the center of 

dilation, and n refers to the scale factor.

Jump to Translation

Suppose a figure is dilated about the point (–2, 3) by a scale factor of 2. If (x, y) is a point on the figure 

that needs to be dilated under these conditions, first the displacement between (–2, 3) and 

(x, y) needs to be found. The horizontal displacement is x + 2, and the vertical displacement is 

y − 3. These displacements can now be multiplied by the scale factor, becoming 2x + 4 and 
2y − 6. Next, these distances need to be added to the coordinates of the center, resulting in the 
point (2x + 2, 2y − 3).

This process is illustrated in Figure 5.4-2 with △ ABC at points (2, 1), (3, 1), and (2, 3). This 
triangle is to be dilated about point (1, 1) by a scale factor of 2. The first step is to find the 
horizontal and vertical displacements to each point from the center of dilation. For the point 
(2, 3), the displacement is one unit to the right and two units up. The next step is to multiply 
each displacement by 2. For this point, that produces the displacement of two units to the 
right and four units up. Finally, add each displacement to the center of dilation to determine 
the location of each dilated point. For this point, that produces the image point (3, 5). 

Applying this same process to the other point in the triangle results in the dilated triangle 
with vertices at (3, 1), (5, 1), and (3, 5).

5.4 - Dilations

Figure 5.4-2 A dilation centered around a point that is 
not the origin can be found by multiplying the scale 
factor by each displacement from the center.
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Example problem" " Find the image of △ ABC produced by a dilation centered at point P(1, 3) and having a  

" " " " scale factor of 0.5.

Analyze" " " The problem asks for the image of triangle ABC after a dilation by 0.5 centered about (1, 3).

Formulate" " " First, find the horizontal and vertical displacements to each point from the center of  
" " " " dilation. Next, multiply these displacements by the scale factor. Finally, add each of these  
" " " " displacements to the coordinates of the center of dilation.

Determine" " " From P(1, 3) to A(2, 1):" " " Find the displacement from center. 
" " " " right 1, down 2
   " " " "
" " " " From P to A':" " " " Multiply the displacement by the scale factor. 
" " " " right 0.5, down 1" " " "
   " " " "
" " " " A': (1.5, 2)" " " " " Add the scaled displacement to the coordinates of the  
" " " " " " " " " " center.
" " " "
" " " " From P(1, 3) to B(4, 1):" " " Find the displacement from center. 
" " " " right 3, down 2" " " "
" " " "

5.4 - Dilations
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" " " " From P to B':" " " " Multiply the displacement by the scale factor. 
" " " " right 1.5, down 1" " " "
" " " "
" " " " B': (2.5, 2)" " " " " Add the scaled displacement to the coordinates of the center.

" " " "
" " " " From P(1, 3) to C(3, 3):" " " Find the displacement from center. 
" " " " right 2, up or down 0" " "
" " " "
" " " " From P to C':" " " " Multiply the displacement by the scale factor. 
" " " " right 1, up or down 0" " "
" " " "
" " " " C': (2, 3)" " " " " Add the scaled displacement to the coordinates of the center.

Justify" " " " Because the center of dilation is not the origin, the distances  
" " " " " from the center of dilation to each vertex of the preimage  
" " " " " were found and then doubled.

Evaluate" " " Dilating one point at a time made the process straightforward. Plotting the image on a graph  
" " " " demonstrated that the image found is a dilation of the preimage.

5.4 - Dilations
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A dilation in the coordinate plane centered at the origin is found by multiplying the coordinates by the 
scale factor. In this virtual manipulative, you will draw a geometric figure on a coordinate plane and 
dilate it about the origin by adjusting the scale factor applied to the coordinates.

In the virtual manipulative, you should have seen how each scale factor changes the coordinates of the 
image. You should have also noticed that if an entire preimage is in only one quadrant, it remains in 
that quadrant no matter the scale factor applied to it.

Virtual Manipulative - Image Dilation
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Properties of Dilations
All transformations examined previously were rigid, meaning that they preserved both the shape and 
size of the figure. Translations, reflections, and rotations are all examples of rigid transformations. 
Dilations do not fall into this category. Although the orientation of a dilated figure remains the same, 
the size of the image compared to the preimage is often either smaller (for scale factors less than 1) or 
larger (for scale factors greater than 1). A nonrigid transformation, therefore, can maintain the shape of 
the figure while not maintaining its size.

Two triangles are shown in Figure 5.4-3. The triangle on the right is produced by a dilation of the 
triangle on the left. Notice that each angle in the image is congruent to the corresponding angle in the 
preimage. Also, each side of the second triangle is exactly half the length of the corresponding side of 
the first triangle. Although the preimage and the image are not congruent, they are similar. Similarity is 
the property of figures having the same shape but not 
necessarily the same size. Corresponding angles in similar 
figures are always congruent, and all pairs of 
corresponding sides share the same proportion. Because 
the triangles in Figure 5.4-3 have congruent angles, and 
because each side of the second triangle is exactly half the 
length of the corresponding side of the first triangle, these 
two triangles are similar. As a result, it can be seen that an 
image produced by a dilation is similar to its preimage.

5.4 - Dilations

Figure 5.4-3 An image produced by a dilation is similar to its preimage.



Section 5.5

Compositions
Objectives

• Identify the preimage or image of a 
composition of transformations

• Determine a possible composition of 
transformations for a given preimage 
and image

• Describe translations and rotations in 
terms of reflections

New Vocabulary
• Glide reflection
• Composition (transformation)
• Isometry

What happens if you shift an image, and then shift it again? What if you reflect the image and then shift it? Or translate it and then rotate it? Many 
transformations can be described in terms of other transformations. Look at the footprints in the sand. No single transform can take one footprint 
and map it to the next. What two transforms would it take?
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Composition of Transformations
The lock in Figure 5.5-1 is shown in two different positions. In order to get it from the first position to 
the second, two transformations are necessary. The process of flipping the handle from the top of the 
lock to the bottom produces a rotation. However, the rotation needs to be followed by a translation in 
order to produce the second image.

A glide reflection is a transformation that involves both a reflection across a line and a translation 
parallel to that line. Footprints are an example of a glide transformation. A glide reflection is one type of 
composition. A composition is a series of two or more transformations that are used together to form an 
image. A composition could involve any combination of translations, rotations, reflections, dilations, or 
other transformations.

Jump to Reflection Across a Line

Jump to Translation

Suppose that triangle ABC undergoes a glide reflection that includes a reflection across the y-axis 
followed by a translation of four units. The first step is to find the image A′ �B′�C′� produced by just the 
reflection. This is done by applying the transformation (x, y) → (−x, y). The next step is to perform the 
translation on A′�B′�C′� in order to obtain the final image (A′ �′�B′�′�C′�′�). In this example, that translation 
involves shifting each point four units upward. This is done by applying the transformation 

(x, y) → (x, y + 4) to the image of the first transformation. The complete example is shown in Figure 

5.5-2. 

5.5 - Compositions

Figure 5.5-1 The handle of this lock undergoes both a 
rotation and a translation as it is moved from the first 
position to the second.

Figure 5.5-2 The glide reflection is performed in two 
steps: first a reflection and then a translation.
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Example problem" " Find the vertices of the image of triangle ABC after it undergoes a dilation about the origin  
" " " " by a scale factor of 2 and then a dilation about the point (6, 8) by a scale factor of 0.5.

Analyze" " " The problem gives a triangle and describes two dilations. It asks for the image formed by the  
" " " " composition of dilations.

Formulate" " " Use the formula for dilation about the origin, (x, y) → (nx, ny), to locate the vertices of the first  
" " " " dilation. Then, use the general dilation formula, (x, y) → (xc + n(x − xc), yc + n(y − yc)), to locate  

" " " " the vertices of the second dilation.

Determine" " " (2, 2) → (2(2), 2(2))"" " " " " " Dilate A about the origin to  
" " " " " " " " " " " " " locate A′�. 
" " " " (2, 2) → (4, 4)
" " " "
" " " " (4, 4) → (2(4), 2(4))"" " " " " " Dilate B about  
" " " " " " " " " " " " " the origin to  
" " " " " " " " " " " " " locate B′�. 
" " " " (4, 4) → (8, 8)" " " " " " "  
" " " " " " " " " " " " "
" " " "
" " " "

5.5 - Compositions
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" " " " (5, 1) → (2(5), 2(1))" " " " " " Dilate C about the  
" " " " " " " " " " " " " origin to locate C′�. 
" " " " (5, 1) → (10, 2)
" " " "

" " " " (4, 4) → (6 + 0.5(4 − 6), 8 + 1
2 (4 − 8))" " " Dilate A′ � about  

" " " " " " " " " " " " " (6, 8) to locate A′�′�. 
" " " " (4, 4) → (5, 6)
" " " "

" " " " (8, 8) → (6 + 0.5(8 − 6), 8 + 1
2 (8 − 8))" " " Dilate B′ � about  

" " " " " " " " " " " " " (6, 8) to locate B′�′�. 
" " " " (8, 8) → (7, 8)
" " " "

" " " " (10, 2) → (6 + 0.5(10 − 6), 8 + 1
2 (2 − 8))" " " Dilate C′ � about  

" " " " " " " " " " " " " (6, 8) to locate C′�′�. 
" " " " (10, 2) → (8, 5)
" " " "

Justify" " " The composition was carried out by performing the two given dilations  
" " " " in the specified order. The image A′�′�(5, 6), B′�′�(7, 8), C′�′�(8, 5) is the result.

Evaluate" " " The dilation formulas provided a straightforward way to perform the  
" " " " two dilations. The answer is reasonable because it was produced by  
" " " " applying the appropriate formulas.

5.5 - Compositions
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Applying & Reversing Compositions
Compositions can involve many different types of transformations. Suppose that a triangle, 
D(1,1) E(2,4) F(4,2), is translated two units to the right and three units upward and then dilated 
around the origin by a scale factor of 2. The final image can be found in two steps. The first step is 
to find the image produced by the translation, and the second step is to dilate this image in order 
to find the final image. The function (x, y) → (x + 2, y + 3) can be used to perform the translation. 
Applying this function produces the image D′�(3, 4), E′�(4, 7), F′�(6, 5). This image can then be 
dilated with the function (x, y) → (2x, 2y). The result is the second image D′�′�(6, 8), E′�′�(8, 14), 
F′ �′�(12, 10). These images are shown in Figure 5.5-3.

Jump to Dilation

Suppose that it is necessary, given an image, to find the preimage from which it was produced. 
This can be done by reversing the steps used to produce the image. For example, if an image was 
produced by applying first a reflection and 
then a translation, the translation must be 
undone first and the reflection second. Each 
individual process must also be reversed. 
For instance, if forming the image involved 
translating the preimage by three units to 
the right, this translation must be undone 
with a translation of three units to the left.

Suppose it is known that the triangle in 
Figure 5.5-4 was obtained by translating a 
preimage two units to the right and three 
units upward and then dilating it around 
the origin by a scale factor of 2. Finding the 
preimage requires first undoing the dilation 

with the transformation (x, y) → ( 1
2 x, 1

2 y) 

and then undoing the translation with the 
transformation (x, y) → (x − 2, y − 3).

5.5 - Compositions

Figure 5.5-3 This figure shows the composition that is 
performed by applying a translation and then a dilation.

Figure 5.5-4 Locating the preimage requires reversing 
the steps used to form the image.
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Example problem" " Describe two different compositions that could be used to transform the smaller triangle  
" " " " into the larger one.

Analyze" " " The problem shows two triangles and asks for two different compositions of transformations that  
" " " " could be applied to the smaller one in order to transform it into the larger one.

Formulate" " " First, identify the ways in which the first triangle is unlike the second. Next, identify the  
" " " " transformations that could be used in order to eliminate each of these differences. Apply the  
" " " " transformations in the way that will align the triangles most efficiently.

Determine" " " The triangles are different in size, position, and orientation. Dilate the smaller triangle by a scale  
" " " " factor of 2 to make the triangles congruent. Choose (5, 5) as the center of dilation in order to align  
" " " " the hypotenuses. Next, rotate the first triangle by 180° in order to give it the same orientation as  
" " " " the second triangle. Use (5, 5) as the center of rotation in order to completely align the triangles.

" " " " Alternatively, dilate the smaller triangle by a scale factor of 2 with the center of dilation at  
" " " " (5, 5) to make the triangles congruent, and then reflect the triangle across the line y = x in  
" " " " order to align the triangles.

Justify" " " Many different compositions could be used to align these triangles. The dilation was necessary in  
" " " " order to make the triangles the same size. Because reflecting this particular triangle would not  
" " " " change its original shape, reflecting and rotating it would have the same effect, and either  
" " " " transformation could be used in order to change the orientation. These transformations were  
" " " " performed in such a way as to eliminate the need for a final translation.

Evaluate" " " Analyzing the differences between the triangles facilitated finding the appropriate  
" " " " transformations. The answers are reasonable because both methods completely align the triangles.

5.5 - Compositions
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Isometry
Several types of transformations are shown in Figure 5.5-5. Notice that the images formed by the 
translation, rotation, and reflection are all congruent to the preimage. The transformations that produce 
congruent images are called isometries. An isometry is a transformation in which the distance between 
any two points on the preimage is equal to the distance between the corresponding points on the image. 
Every isometry produces an image congruent to the preimage, and every transformation that produces 
such an image is an isometry. In this sense, an isometry is the same as a rigid transformation. 
Translations, rotations, and reflections are all isometries, but dilations are not.

Suppose that the preimage in Figure 5.5-5 undergoes two transformations: first a reflection and then a 
rotation. The image would be in a different orientation than any of the images shown in the figure, but 
it would still be congruent to the preimage. Any combination of translations, rotations, and reflections 
produces an image that is congruent to the preimage. Another way to say this is that any composition of 
isometries is an isometry. This idea is stated formally in Theorem 5.5-1 and proven in Proof 5.5-2.

5.5 - Compositions

Figure 5.5-5 This figure shows many different 
transformations. Translations, rotations, and 
reflections are isometries. Dilations are not 
isometries.

If each transformation in a composition of 
two or more transformations is an isometry, 

then the composition  
is also an isometry.

Theorem 5.5-1 The composition of isometries theorem

Given" Preimage A, image A′ �, image A′ �′�
" " A → A′ � is an isometry
" " A′�→ A′�′� is an isometry 
Prove"" A → A′ �′ � is an isometry

Statements Reasons

Definition of isometry

Definition of isometry

Transitive property

            is an isometry Definition of isometry

A ≅ A′�

A′ �≅ A′�′ �

A ≅ A′�′�

A → A′�′ �

Proof 5.5-2 Proof of the composition of isometries



Chapter 5 - Transforming Shapes 235 Section continues

Composition of Reflections
Suppose that a triangle labeled A, B, and C at its vertices is 
reflected across a line. Although the new image is congruent to 
the preimage, the image formed by this reflection is flipped. 
That is, the vertices are labeled counterclockwise instead of 
clockwise. Now suppose that the shape is reflected again, this 
time across a second line that is parallel to the first. The image 
now formed is also congruent with the initial preimage, but the 
vertices are once again labeled clockwise. This process, both the 
first and second reflections, is illustrated in Figure 5.5-6.

Figure 5.5-6 reveals that not only are the vertices in the second 
image labeled in the same order as in the preimage, but the 
figures also have the same orientation. The only difference 
between the preimage and this second image is the location. As 
a result, the second image could also be produced by a 
translation of the preimage. As Theorem 5.5-3 states, reflecting a 
figure twice across parallel lines results in a translation of the 
original figure.

5.5 - Compositions

A transformation consisting of two reflections across 
parallel lines is equivalent to a translation.  

The translation vector is perpendicular to the lines,  
and its length is 2 times the distance between the lines.

Theorem 5.5-3 Reflections in parallel lines theorem

Figure 5.5-6 Reflecting an object twice over parallel lines results in a translation of the 
preimage.
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Reflecting an Image Across Two Intersecting Lines
Suppose that a shape such as the one shown in Figure 5.5-7 is 
reflected across a line and then across a second line that 
intersects the first. The result is similar to the image formed by 
reflections across parallel lines in that the vertices are labeled in 
the same direction as they are in the preimage. However, the 
image is in a different orientation than the preimage.

Because the image formed by the two reflections is congruent to 
the preimage but in a different orientation, this image could be 
formed by a rotation of the preimage. As Theorem 5.5-4 states, 
reflecting a figure twice across intersecting lines results in a 
rotation of the original figure.

5.5 - Compositions

Figure 5.5-7 Reflecting an object twice over intersecting lines results in a rotation of the 
preimage.

A transformation consisting of two reflections  
across intersecting lines is equivalent to a rotation.  
The center of rotation is the point of intersection  
of the lines, and the angle of rotation is 2 times  

the measure of the acute or right angle  
formed by the intersecting lines.

Theorem 5.5-4 Reflections in intersecting lines theorem
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A tessellation is the tiling of a plane using geometric shapes without overlaps or gaps. In this virtual 
manipulative, you will be able to use a given or created geometric shape to create a tessellating pattern 
that fills the space using translations, and horizontal and vertical flips.

You should have been able to create a tessellating pattern that filled the space, free of overlaps or gaps, 
using only translations and flips. You should have also been able to draw your own geometric shape 
and attempt to tessellate them. Why were some of the shapes you created able to be tessellated, and 
some not?

Virtual Manipulative - Tessellations



Section 5.6

Symmetry
Objectives

• Identify and classify symmetry in two-
dimensional and three-dimensional 
objects

New Vocabulary
• Symmetry
• Line symmetry
• Reflection symmetry
• Line of symmetry
• Axis of symmetry
• Rotational symmetry
• Radial symmetry
• Center of symmetry
• Point of symmetry
• Order (symmetry)
• Magnitude (symmetry)
• Plane symmetry
• Axis symmetry
• Solid of revolution

This paper snowflake was created by folding a piece of paper into eight layers and then making a few cuts. By this process, each section of the 
snowflake was cut the same way, making a repeating pattern all the way around. If this snowflake were rotated by 180°, would you be able to tell 
the difference? If it were folded in half, would the two halves perfectly fit together?
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Types of Symmetry
A figure has symmetry if there is a rigid transformation that maps the figure back onto itself. That is, a 
figure has symmetry if, after a rigid transformation, the image and the preimage have the same shape, 
size, orientation, and position. Many plants and animals exhibit symmetry. The butterfly in Figure 5.6-1 
is an example of this. If this butterfly were reflected across its centerline, the image created would be 
identical to the original butterfly. The butterfly’s symmetry is associated with reflection.

A different type of symmetry is shown in Figure 5.6-2. In this example, reflecting the mosaic around its 
centerline does not produce an image identical to the original mosaic. However, rotating the mosaic by 
180° does produce an image that is identical to the original. The mosaic’s symmetry is associated with 
rotation.

5.6 - Symmetry

Figure 5.6-1 This butterfly is an example of a symmetrical object. Figure 5.6-2 A 180° rotation around the center of this mosaic produces 
a result identical to the original.
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Lines of Symmetry
Line symmetry is a type of symmetry in which a reflection of the preimage produces an image with 
identical position and orientation. Line symmetry is also known as reflection symmetry. The line across 
which the preimage is reflected is known as the line of symmetry or the axis of symmetry. A drawing of 
a butterfly is shown in Figure 5.6-3. Notice the dotted line running down the center of the butterfly. This 
butterfly is an example of line symmetry, and the dotted line through its center is the line of symmetry.

Jump to Reflection Across a Line

Suppose that this butterfly were folded at the line of symmetry. The two sides would then completely 
align, and it would appear as seen in Figure 5.6-4. Notice that the central vertical line is the only place 
where the butterfly could be folded in order to achieve this effect. It would be possible to fold the 
butterfly across other lines, but in no other case would the two sides of the butterfly completely align. 
As a result, the butterfly has just a single line of symmetry.

5.6 - Symmetry

Figure 5.6-3 This drawing of a butterfly demonstrates 
reflection symmetry with the line of symmetry shown down 
the center of the drawing.

Figure 5.6-4 When this 
drawing of a butterfly is folded 
at the line of symmetry, the 
two sides completely align.
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Multiple Lines of Symmetry
Some shapes have more than one line of symmetry. For these shapes, folding over any of 
these lines produces two halves that align completely. For example, many types of flowers 
have multiple lines of symmetry. Figure 5.6-5 shows an example of such a flower. Notice that 
a line drawn from the tip of any of the petals through the center of the flower is a line of 
symmetry. This flower has five such lines, one corresponding to each petal. 

In order to determine the number of lines of symmetry an object has, consider how many 
different ways it can be folded. The flower in Figure 5.6-5 can be folded along the centerline 
of each petal, and each way, the two halves entirely match. As a result, this flower has five 
lines of symmetry. The number of lines of symmetry can be predicted for certain shapes. For 
instance, consider the polygons shown in Figure 5.6-6. Notice that the pentagon has five 
lines of symmetry, and the hexagon has six. For any regular polygon, the number of lines of 
symmetry is equal to the number of sides.

5.6 - Symmetry

Figure 5.6-5 This flower has five different lines of 
symmetry.

Figure 5.6-6 The number of lines of symmetry is equal to the number of sides on the polygon.
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Zero Lines of Symmetry
Many objects, including some that appear to have a form of symmetry, do not have any lines of 
symmetry. For example, consider a parallelogram that is not equiangular or equilateral. Although 
several lines could be drawn to divide the parallelogram in half, none of these functions as a line of 
symmetry. A parallelogram such as this is shown in Figure 5.6-7. Notice that when the parallelogram is 
folded along any of the lines that divide the shape in half, the two sides do not completely align.

As another example, consider the differences that exist with respect to symmetry between a square and 
a rectangle. A square, which is a regular polygon, has four lines of symmetry. A rectangle, however, has 
only two lines of symmetry. The diagonals of a rectangle divide the 
shape in half, but they are not lines of symmetry.

5.6 - Symmetry

Figure 5.6-7 This parallelogram has no line along which it can be folded in order to make the 
two sides completely align.
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Angle of Rotation
Rotational symmetry is a type of symmetry in which a rotation of the preimage produces a 
congruent image with the same position and orientation. Rotational symmetry may also be 
referred to as radial symmetry, for example, in relation to biological organisms. The point 
around which the preimage is rotated is known as the center of symmetry or the point of 
symmetry. A picture of a starfish is shown in Figure 5.6-8. Notice that there are several angles 
through which it can be rotated around its center with no change in its appearance.

Jump to Properties of Rotation

The order of symmetry is the number of positions to which a figure can be rotated without 
any change in its appearance. The magnitude of the symmetry is the measure of the smallest 
angle through which the figure must be rotated in order to achieve an identical appearance. 
The starfish’s order of symmetry is 5 because it can be in any of five different positions—any 
of the five points can be at the top—while maintaining the same appearance.

Because there are five angles that contribute to the symmetry of the starfish, each rotation is 
equal to one-fifth of the total circle: 360º/5 = 72º. Therefore, the magnitude of this symmetry 
is 72°. If the legs of the starfish were labeled, then it would be seen that making five 72° 
rotations returns the starfish to its original position. This pattern is always true. That is, the 
magnitude of any rotational symmetry can be calculated as 360° divided by the order.

Recall that parallelograms that are not equilateral or equiangular do not exhibit line 
symmetry. The same parallelogram, however, possesses rotational symmetry. Rotating it by 
180° results in an image that cannot be distinguished from the original parallelogram. As a 
result, the parallelogram, as shown in Figure 5.6-9, exhibits rotational symmetry with an 
order of 2 and magnitude of 180°.

5.6 - Symmetry

Figure 5.6-8 This starfish exhibits rotational symmetry.

Figure 5.6-9 A parallelogram rotated by 180° around its 
center appears identical to the original parallelogram.
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Rotational Symmetry
The order of a rotationally symmetric shape can be found by examining the figure. For example, the star 
in Figure 5.6-10 has 10 points. Any of these 10 points could be positioned at the top of the figure, giving 
the star 10 identical orientations. This number is the order of the star’s symmetry. The order can be 
found by counting how many times the repeating pattern occurs, spaced regularly around the shape. 

The magnitude of this symmetry is 
360°
10 , which is 36°.

Some shapes that have rotational symmetry also have line symmetry. For instance, a 10-pointed star has 
both line symmetry and rotational symmetry. An example is shown in Figure 5.6-11. Notice that there is 
a line of symmetry through each pair of opposite points (five lines in all), and a line of symmetry also 
goes through each of the inner vertices between the points (another five lines). This makes a total of 10 
lines of symmetry, which is the same as the order of the rotational symmetry. For any shape that has 
both line symmetry and rotational symmetry, the number of lines of symmetry is equal to the order of 
the rotational symmetry.

Many shapes do not have rotational symmetry. These include many shapes that do have line symmetry. 
For example, the trapezoid shown in Figure 5.6-12 has line symmetry but not rotational symmetry. If 
the trapezoid is rotated, it must go through an entire 360° rotation before it regains its original 
appearance.

5.6 - Symmetry

Figure 5.6-10 The order of symmetry for 
this star is equal to the number of points 
of the star.

Figure 5.6-11 This star has 10 lines of 
symmetry, and its rotational symmetry also 
has an order of 10.

Figure 5.6-12 The trapezoid does not have rotational 
symmetry.
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Three-Dimensional Symmetry
Three-dimensional objects can also exhibit symmetry. Consider the eyeglasses shown 
in Figure 5.6-13. If a vertical plane were drawn through the center of the bridge, and 
if the left half of the pair of glasses were reflected across this plane, then it would fall 
exactly on top of the right half of the glasses.

Plane symmetry is a type of symmetry in which a three-dimensional object can be 
divided by a plane into two halves that are mirror images of each other. The 
eyeglasses in Figure 5.6-13 are an example of plane symmetry because the left half is 
a mirror image of the right half.

Axis symmetry is a type of symmetry in which a three-dimensional object can be 
rotated around an internal axis in order to achieve an appearance identical to its 
original appearance. The airplane propeller shown in Figure 5.6-14 is an example of 
axis symmetry. If the propeller were rotated by any multiple of 120°, the result would 
be identical to the original state. However, the propeller does not have plane 
symmetry. Because of the three-dimensional curvature of the blades, there is no 
plane that can divide the propeller into two mirror-image halves.

Plane symmetry is the three-dimensional version of line symmetry. Both are 
produced by reflection. Just as one-half of a two-dimensional object with line 
symmetry can be considered a reflection of the other half, in the same way, one-half 
of a three-dimensional object with plane symmetry can be considered a reflection of 
the other half. Similarly, axis symmetry is the three-dimensional version of rotational 
symmetry. Both are produced by rotation. In two-dimensional rotational symmetry, a 
figure is rotated around a central point to a position in which it appears identical. In 
axis symmetry, a three-dimensional figure is rotated around a central line to a 
position in which it appears identical.

5.6 - Symmetry

Figure 5.6-13 The right half of this pair of eyeglasses is a 
reflection of the left half.

Figure 5.6-14 The propeller exhibits axis symmetry but not plane 
symmetry.
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Symmetry in Real Objects
Many real three-dimensional objects are symmetrical. For example, even though it may not be apparent 
at first, the hammer shown in Figure 5.6-15 has plane symmetry. To visualize the symmetry, imagine 
viewing the hammer from head on as if looking at its striking surface. Other examples of plane 
symmetry include an hourglass and a carton of eggs.

There are also many real objects that have axis symmetry. Many patterned bowls, 
such as the one shown in Figure 5.6-16, have axis symmetry. Other examples of 
axis symmetry include playing cards and pinwheels. 

5.6 - Symmetry

Figure 5.6-15 This hammer has plane symmetry. To visualize the symmetry, imagine 
viewing the hammer from head on.

Figure 5.6-16 This bowl has axis symmetry.
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Solid of Revolution
Suppose that a triangle such as the one shown in Figure 5.6-17 is rotated around an axis. This motion 
creates a three-dimensional cone. A three-dimensional solid created by rotating a plane figure around 
an axis is called a solid of revolution. If the solid were to be cut down the axis of symmetry in order to 
view the cross section, that cross section would be the rotated plane figure (the red triangle in Figure 
5.6-17) along with its reflection across the axis of rotation. Consequently, the plane figure that is rotated 
is half of the cross section of the solid.

The three-dimensional shape of many real objects can be matched by the solid of revolution of a two-
dimensional shape. Indeed, some objects are actually created by rotating something around an axis. One 
example is pottery made on a pottery wheel, as shown in Figure 5.6-18. The pot is made by spinning the 
clay around a central axis. Anything the potter does to shape the clay takes effect all the way around the 
circumference of the pot. As a result, the pot obtains a form of axis symmetry. The object appears 
identical when rotated to any angle.

5.6 - Symmetry

Figure 5.6-17 Rotating this triangle around the x-axis creates a three-
dimensional cone.

Figure 5.6-18 Pottery is made on a pottery wheel by revolving the clay 
around a central axis.
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Real-World Solids of Revolution
Wooden and metal solids of revolution can be made on a lathe, such as the woodworking lathe shown 
in Figure 5.6-19. The lathe spins the piece of wood or metal, which can be shaped as it spins. This 
process produces an object with perfect radial symmetry. Baseball bats, table legs, and wooden bowls 
can all be made by this process.

There are many examples of objects whose shapes are solids of revolution even though they are not 
actually produced by anything revolving. A flying disk, as shown in Figure 5.6-20, has this type of 
shape. Neglecting any writing or markings on its surface, its appearance is unchanged by a rotation of 
any angle. Other examples of such objects are Hula-Hoops, plumbing pipes,  
and CDs.

5.6 - Symmetry

Figure 5.6-20 The flying disk is a solid of revolution, but it is not manufactured 
by revolving equipment.

Figure 5.6-19 A wooden object shaped while spinning on this lathe takes the shape of 
a solid of revolution.


