# Success Center Directed Learning Activity (DLA) 

## Transformations Using Parent Graphs

## Directed Learning Activity - Transformations Using Parent Graphs

Description: In this Directed Learning Activity (DLA), you will learn how to graph transformations of functions - such as vertical shrinking/stretching, horizontal/vertical shifting, and reflecting - using the parent graphs.

Prior Knowledge: You will need to know the parent graphs of parabola, square root, cubic, and absolute value graphs.

## Parent Graphs

| $x$ | $y=x^{2}$ |
| :---: | :---: |
| 0 | 0 |
| -1 | 1 |
| 1 | 1 |
| -2 | 4 |
| 2 | 4 |



Parabola

| $x$ | $y=\sqrt{x}$ |
| :---: | :---: |
| 0 | 0 |
| 1 | 1 |
| 4 | 2 |



Square Root

| $x$ | $y=\|x\|$ |
| :---: | :---: |
| 0 | 0 |
| -1 | 1 |
| 1 | 1 |
| -2 | 2 |
| 2 | 2 |



Absolute Value

| $x$ | $y=x^{3}$ |
| :---: | :---: |
| 0 | 0 |
| -1 | -1 |
| 1 | 1 |



Cubic

Part One: Vertical Stretching and Shrinking Using Parent Graphs
Graphing functions in the form $y=a f(x) . f(x)$ could be $x^{2}, \sqrt{x},|x|$, or $x^{3}$.
If $a$ is a positive number greater than $1(a>1) \rightarrow$ vertical stretching
If $a$ is a positive number between 0 and $1(0<a<1) \rightarrow$ vertical shrinking
From the parent graph, multiply each $y$-coordinate by $a$ to help you graph $y=a f(x)$.

## Example 1:

Multiplied by 2 from
a) $y=x^{2}$


Parabola the $y$-coordinates

| Parent Table |
| :--- |
| $x$ $y=x^{2}$ <br> 0 0 <br> -1 1 <br> 1 1 <br> -2 4 <br> 2 4$\quad$$x$ $y=(2) x^{2}$ <br> 0 0 <br> -1 2 <br> 1 2 <br> -2 8 <br> 2 8 |


|  |  |
| :---: | :---: |
| $x$ | Multiplied by $1 / 2$ from the <br> $y$-coordinates |
| $x=\frac{1}{2}$ | 2 |
| 0 | 0 |
| -1 | $1 / 2$ |
| 1 | $1 / 2$ |
| -2 | 2 |
| 2 | 2 |

$y=2 x^{2} \rightarrow$ Multiplied parent $y$-coordinates by 2 (y-coordinates doubled)
$y=\frac{1}{2} x^{2} \rightarrow$ Multiplied parent $y$-coordinates by $\frac{1}{2}(y$-coordinates were divided by 2 )

## Part Two: Reflection About the $x$-axis Using Parent Graphs

Graphing functions in the form $y=-f(x) . f(x)$ could be $x^{2}, \sqrt{x},|x|$, or $x^{3}$.
If the function is $y=-f(x)$, then the function is reflected about the $x$-axis.
The negative sign in front of the function reverses the sign of every $y$-coordinate.

## Example 2:

b) $y=-|x|$


| Reversed the signs of every <br> y-coordinate |  |  |
| :---: | :---: | :---: |
| $x$ | $y=\|x\|$ |  |
| 0 | 0 |  |
| -1 | 1 |  |
| 1 | 1 |  |
| -2 | 2 |  |
| 2 | 2 |  |
| 0 | $y=-\|x\|$ |  |
| -1 | 0 |  |
| 1 | -1 |  |
| -2 | -1 |  |
| 2 | -2 |  |

Absolute Value

## Part Three: Horizontal Shifts Using Parent Graphs

Graphing functions in the form $y=f(x+h) . f(x)$ could be $x^{2}, \sqrt{x},|x|$, or $x^{3}$.
If the function is $y=f(x+h)$, then the function is shifted $h$ units to the left.
Subtract $h$ units from the $x$-coordinates.
If the function is $y=f(x-h)$, then the function is shifted $h$ units to the right.
Add $h$ units to the $x$-coordinates.

## Example 3:

c) $y=(x-3)^{2} \rightarrow$ shifted right 3 units


d) $y=(x+3)^{2} \rightarrow$ shifted left 3 units


| Subtracted 3 units from <br> the $x$-coordinates |  |  |  |
| :---: | :---: | :---: | :---: |
| $x$ | $y=x^{2}$ |  |  |
| 0 | 0 |  |  |
| -1 | 1 |  |  |
| 1 | 1 |  |  |
| -2 | 4 |  |  |
| 2 | 4 |  |  |

## Part Four: Vertical Shifts Using Parent Graphs

Graphing functions in the form $y=f(x)+k . f(x)$ could be $x^{2}, \sqrt{x},|x|$, or $x^{3}$.
If the function is $y=f(x)+k$, then the function is shifted $k$ units up.
Add $k$ units to the $y$-coordinates.
If the function is $y=f(x)-k$, then the function is shifted $k$ units down.
Subtract $k$ units from the $y$-coordinates.

## Example 4:

e) $y=x^{2}+2 \rightarrow$ shifted up 2 units

f) $y=x^{2}-2 \rightarrow$ shifted down 2 units


Subtracted 2 units from the $y$-coordinates

| $x$ | $y=x^{2}$ |
| :---: | :---: |
| 0 | 0 |
| -1 | 1 |
| 1 | 1 |
| -2 | 4 |
| 2 | 4 |$\quad$| $x$ | $y=x^{2}-2$ |
| :---: | :---: |
| 0 | -2 |
| -1 | -1 |
| 1 | -1 |
| -2 | 2 |
| 2 | 2 |

Part Five: Graphing Functions in the Form $y=-a f(x-h)+k$ Using the Parent Graphs $f(x-h)$ could be $(x-h)^{2}, \sqrt{x-h},|x-h|$, or $(x-h)^{3}$.
When graphing functions with several transformations, it's helpful to carry them out using the order of operations (PEMDAS). The following examples show this in five steps, since the given functions include all the transformations explained previously. First, you start with the parent graph. Second, you do the horizontal shift. Third, you do the vertical stretching/shrinking. Fourth, you do the reflection. Fifth, you do the vertical shift. If a function does not include all the transformations, simply carry out the given transformations in the order described above.

## Example 5:

Graph $y=-2 \sqrt{x+3}-1$

## Step 1)

Parent graph $\quad y=\sqrt{x}$


## Step 2)

$\begin{aligned} & y=\sqrt{x+3} \rightarrow \text { Shifted to the left } \\ & 3 \text { units }\end{aligned}$


Subtracted 3 from the parent $x$-coordinates

Step 3)
$y=2 \sqrt{x+3} \rightarrow$ Vertically stretched by a factor of 2


Multiplied by 2 from the $y$-coodinates (the y-coordinates doubled)


Reversed the signs of the $y$-coordinates

## Example 6:

$$
\text { Graph }-\frac{1}{2}(x-4)^{3}+3
$$

## Step 1)

Parent graph $\quad y=x^{3}$



Added 4 to the parent's $x$-coordinates

Step 3)
$y=\frac{1}{2}(x-4)^{3} \rightarrow$

Vertically shrunk a factor of $\frac{1}{2}$

(the y-coordinates were divided by 2)

## Step 4)

$y=-\frac{1}{2}(x-4)^{3} \rightarrow$ Reflected about the $x$-axis


Reversed the signs of the $y$-coordinates

## Step 5)

$y=-\frac{1}{2}(x-4)^{3}+3 \rightarrow$ Shifted up
3 units


Final Answer
Added 3 to the $y$-coordinates

Before you move on, briefly review which transformations affect the $x$ and $y$-coordinates:


Affects the x -coordinates

Now, that you know all the transformations performed on functions of the form $y=-a f(x-h)+k$ in which $f\left(\begin{array}{ll}x & h\end{array}\right)$ could be $(x-h)^{2}, \sqrt{x-h},|x-h|$, or $(x-h)^{3}$, you should be able to graph the following functions.

## Part Six: Applying What You Have Learned

Graph the following functions using the parent graph.

1) $y=3(x+1)^{2}$

2) $y=\frac{1}{2}|x+2|-3$

3) $y=-\frac{1}{2} \sqrt{x-5}$

4) $y=2(x+3)^{2}$

5) $y=4|x-2|$

6) $y=-\frac{1}{2}|x+2|-3$

7) $y=\frac{1}{4} x^{2}$

8) $y=-\frac{1}{3}(x-1)^{3}$

9) $y=-3|x-2|+4$

10) $y=-\sqrt{x-2}+4$


Part Seven: Reflecting on What You Have Learned

Name one thing that you understand better about graphing transformations of functions using parent graphs as a result of completing this activity.

Name one thing that you still do not understand about graphing transformations of functions.

Give at least two suggestions to improve this activity.

M111.1 - Transformations Using Parent Graphs

## PRINT STUDENT NAME

## STUDENT \#

## For Follow-Up:

$\qquad$ The student completed the entire activity.
$\qquad$ The student attempted to answer every question.
$\qquad$ The student demonstrated an understanding of the process of graphing transformations of functions - such as vertical shrinking/stretching, horizontal/vertical shifting, and reflecting - using the parent graphs.

## Additional Comments:

## DATE

INSTRUCTOR/TUTOR SIGNATURE

> STUDENT - DO NOT FORGET TO TURN THIS SHEET IN AT THE FRONT DESK!

You may not get credit for completing this DLA ifyou fail to leave this sheet with the front desk receptionist.

