Solving Equations and Formulas

(Pages 166–170)

Some equations contain more than one variable. To solve an equation or formula for a specific variable, you need to get that variable by itself on one side of the equation. When you divide by a variable in an equation, remember that division by 0 is undefined.

When you use a formula, you may need to use dimensional analysis, which is the process of carrying units throughout a computation.

Examples

a. Solve the formula \(d = rt \) for \(t \).

The variable \(t \) has been multiplied by \(r \), so divide each side by \(r \) to isolate \(t \).

\[
\frac{d}{r} = \frac{rt}{r} \quad \text{or} \quad \frac{d}{r} = t
\]

Thus \(t = \frac{d}{r} \), where \(r \neq 0 \).

b. Find the time it takes to drive 75 miles at an average rate of 35 miles per hour.

Use the formula you found for \(t \) in Example A.

\[
t = \frac{d}{r}
\]

\[
 t = \frac{75 \text{ mi}}{35 \text{ mi} / \text{h}} = \frac{75 \text{ mi}}{35 \text{ mi} / \text{h}} = \frac{75 \text{ mi}}{35 \text{ mi} / \text{h}} = t = 2 \frac{1}{7} \text{ hours}
\]

Try These Together

1. Solve \(4a + b = 3a \) for \(a \).

HINT: Begin by subtracting 3a from each side.

2. Solve \(\frac{c + d}{3} = 2c \) for \(c \).

HINT: Begin by multiplying each side by 3.

Practice

Solve each equation for the variable specified.

3. \(f = epd, \) for \(e \)

4. \(12g + 31h = -8g, \) for \(h \)

5. \(y = mx + b, \) for \(b \)

6. \(v = r + at, \) for \(r \)

7. \(\frac{3x + y}{c} = 4, \) for \(c \)

8. \(\frac{5xy + n}{2} = -6, \) for \(y \)

9. \(m + n + 2p = 3, \) for \(m \)

10. \(6y + z = bc - 2y, \) for \(y \)

11. \(3x - 4y = 7, \) for \(y \)

12. \(s = \frac{n}{2}(a + t), \) for \(n \)

13. \(v = \frac{4}{3}r, \) for \(r \)

14. \(W = mgh, \) for \(g \)

15. \(PV = nRT, \) for \(V \)

16. \(G = F - D, \) for \(D \)

17. \(6t + 62s = \frac{1}{2}(3t - 42s), \) for \(t \)

18. \(3c + 5d = 7d - 6c, \) for \(d \)

19. **Standardized Test Practice**

Four ninths of a number \(c \) increased by 4 is 18 less than one eighth times another number \(d \). Solve for \(c \).

\[
\begin{align*}
\text{A} & : c = 9 \frac{9}{32}d + 31 \frac{1}{2} \\
\text{B} & : c = 4 \frac{4}{72}d + 4 \frac{4}{72} \\
\text{C} & : c = 9 \frac{9}{32}d - 49 \frac{1}{2} \\
\text{D} & : c = 4 \frac{4}{72}d - 31 \frac{1}{2}
\end{align*}
\]

© Glencoe/McGraw-Hill