7.9 Day 1 Warm Up

For each figure, tell if there is enough information to prove that the quadrilateral is a parallelogram. If so, give the theorem or definition.
1.

2.

3. $m \angle A+m \angle D=180^{\circ}$

4.

7.9-Proving a Quadrilateral is a Rhombus, Rectangle, or a Square

Objective: Use properties of sides, angles, and diagonals of rhombus, rectangles, and squares.

Ways to Prove that a Quadrilateral is a Rectangle:

\checkmark Show that it has four right angles (Definition of Rect.)

\checkmark Show that it is a parallelogram with one right angle. ($\square \mathrm{w}$ / one rt. $\angle \longrightarrow$ Rect.)

\checkmark Show that it is a parallelogram with diagonals that are congruent. ($\square \mathrm{w} /$ diags $\cong \longrightarrow$ Rect.)

$$
\overline{A C} \cong \overline{B D}
$$

Ways to Prove that a Quadrilateral is a Rhombus:

\checkmark Show that it has four congruent sides (Definition of Rhombus)

\checkmark Show that it is a parallelogram with one pair of consecutive sides congruent. (\square w/ one pair cons. sides $\cong \longrightarrow$ Rhombus)

\checkmark Show that it is a parallelogram with diagonals are perpendicular.
($\square \mathrm{w} /$ diags $\perp \longrightarrow$ Rhombus)

\checkmark Show that it is a parallelogram with a diagonal bisects the angles.
($\square \mathrm{w} /$ diag bisect $\angle s \rightarrow$ Rhombus)

Examples:

Determine if the conclusion is valid. If not, tell what additional information is needed to make it valid.

1. Given: $\overline{E F} \cong \overline{F G}, \overline{E G} \perp \overline{F H}$

Conclusion: EFGH is a rhombus.

The theorems for a rhombus are:
$\square \mathrm{w}$ / one pair cons. sides $\cong \longrightarrow$ Rhombus or $\square \mathrm{w} /$ diags $\perp \longrightarrow$ Rhombus

However, to apply either theorem, you must first know that $E F G H$ is a parallelogram, which can't be proven.
Therefore, the conclusion is not valid.
2. Given: $\overline{E B} \cong \overline{B G}, \overline{F B} \cong \overline{B H}, \overline{E G} \cong \subseteq \overline{F H}, \triangle B F \cong \triangle E B H$

Conclusion: EFGH is a square.

The diagonals bisect each other, so EFGH is a parallelogram.

The diagonals are congruent, so EFGH is a rectangle.
Since $\triangle \mathrm{EBF} \cong \Delta \mathrm{EBH}, \overline{\mathrm{EF}} \cong \overline{\mathrm{EH}}$.
A pair of consecutive angles are congruent, so EFGH is a rhombus.
Since EFGH is a rectangle and a rhombus, it is a square.
3. Given: $\angle A B C$ is a right angle Conclusion: $A B C D$ is a rectangle.

If one angle of a parallelogram is a right angle,
 then the parallelogram is a rectangle.

To apply this theorem, you need to know that $A B C D$ is a parallelogram .

Therefore, the conclusion is not valid.
4. Given: $A B=B C=C D=D A, A C=B D$

Conclusion: $A B C D$ is a square

All four sides are congruent, so $A B C D$ is a rhombus by definition and also a parallelogram.

The diagonals are congruent, so $A B C D$ is a rectangle.
Since $A B C D$ is a rhombus and a rectangle, it is also a square.

7.9 Day 2—Special Quadrilaterals Coordinate Proofs

7.9 Day 2 Warm Up

Use the points $A(-3,7) \& B(5,-3)$ to find the following:

1. Slope
2. Midpoint
3. Distance

7.9 Day 2—Special Quadrilaterals Coordinate Proofs

Objective: Use properties of sides, angles, and diagonals to prove special quadrilaterals.

Shape	Sketch	Properties	Coordinate Proofs	Area
		- 4 sided polygon - Interior $\angle s$ add to $=360^{\circ}$		
		- Both pairs opp. sides II - Both pairs opp. sides \cong - Diags. bisect e. o. - Both pairs opp. $\angle s \cong$ - Consec. \angle 's supp.	Opp. sides same slope Opp. sides same distance Diags. same midpoint	$\begin{aligned} & \sim \\ & 0 \\ & 11 \\ & 7 \end{aligned}$

$\begin{aligned} & \text { n } \\ & \stackrel{0}{E} \\ & \underline{0} \\ & \frac{1}{\sim} \end{aligned}$		- 4 sides \cong - $\square \mathrm{w} /$ diags. \perp - $\square \mathrm{w} /$ diags are \angle bisectors	All 4 sides same distance > (diags. same midpt.) AND diags slopes are opp. reciprocals	
		- $4 \mathrm{rt} . \angle s$ - $\square \mathrm{w} /$ diags \cong	Consec. sides slopes are opp. reciprocals \square (diags. same midpt.) AND diags. same distance	$\begin{aligned} & \underset{\sim}{2} \\ & 1 \\ & \underset{\sim}{1} \end{aligned}$
		- 4 sides \cong - $4 \mathrm{rt} . \angle s$ - \square w/ diags. \perp $\square \mathrm{w} /$ diags \cong - \square w/ diags are \angle bisectors	All sides same distance AND Consec. sides slopes are opp. reciprocals $>\square$ (diags. same midpt.) AND diags slopes are opp. reciprocals (diags. same midpt.) AND diags. same distance	$\begin{gathered} \text { N } \\ \text { II } \\ \underset{\sim}{n} \end{gathered}$

응 N 区 은 №		- Exactly one pair of II sides	Only one pair opp. sides have same slope	$\stackrel{\sim}{\stackrel{\sim}{e}}$	
$\begin{aligned} & \boldsymbol{y} \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \mathbf{N} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		- One pair opp. sides II - Legs are \cong - Diags. are \cong	Only one pair opp. sides have same slope AND Legs same distance or Diags same distance	${\underset{\sim}{i n}}_{\pi}^{e}$	
$\stackrel{\text { O}}{\underline{\underline{E}}}$		- 2 pairs consec. sides \cong (opp. sides not \cong) - Diags are \perp - Only one pair opp. $\angle s \cong$	2 pairs consec. sides have the same distance	$\begin{gathered} \tilde{N} \\ \dot{O} \\ \sim \operatorname{IN} \\ \\| \\ \mathbb{I} \end{gathered}$	

Use Coordinate Geometry to determine what kind of Parallelogram the

 coordinates of four vertices make.

Example: Determine what kind of quadrilateral the four points make.
5. $M(-2,-1) \quad A(1,3) \quad T(5,0) \quad H(2,-4)$

6. $P(-1,3) \quad Q(-2,5) \quad R(0,4) \quad S(1,2)$

7. $\mathrm{L}(-1,1) \quad \mathrm{M}(1,3) \quad \mathrm{N}(3,1) \quad \mathrm{O}(1,-3)$

