4.

7.9 Day 1 Warm Up

For each figure, tell if there is enough information to prove that the quadrilateral is a parallelogram. If so, give the theorem or definition.

7.9—Proving a Quadrilateral is a Rhombus, Rectangle, or a Square

Objective: Use properties of <u>sides</u>, <u>angles</u>, and <u>diagonals</u> of rhombus, rectangles, and squares. **Ways to Prove that a Quadrilateral is a Rectangle:**

✓ Show that it has four right angles (Definition of Rect.)

✓ Show that it is a parallelogram with one right angle.
 (_____ w/ one rt. ∠ → Rect.)

✓ Show that it is a parallelogram with diagonals that are congruent.
 (_____ w/ diags ≅ → Rect.)

Ways to Prove that a Quadrilateral is a Rhombus:

 Show that it has four congruent sides (Definition of Rhombus)

 \checkmark Show that it is a parallelogram with one pair of consecutive sides congruent.

 \square w/ one pair cons. sides $\cong \longrightarrow$ Rhombus)

✓ Show that it is a parallelogram with diagonals are perpendicular.
 (_____ w/ diags ⊥ → Rhombus)

✓ Show that it is a parallelogram with a diagonal bisects the angles. (_____ w/ diag bisect ∠ $s \rightarrow$ Rhombus)

Examples:

Determine if the conclusion is valid. If not, tell what additional information is needed to make it valid.

1. Given: $\overline{EF} \cong \overline{FG}$, $\overline{EG} \perp \overline{FH}$ Conclusion: EFGH is a rhombus.

The theorems for a rhombus are:

- \square w/ one pair cons. sides \cong \longrightarrow Rhombus or
- └──── w/ diags ⊥ ──→ Rhombus

However, to apply either theorem, you must first know that *EFGH* is a parallelogram, which can't be proven. Therefore, the conclusion is not valid.

2. Given: $\overline{EB} \cong \overline{BG}, \overline{FB} \cong \overline{BH}, \overline{EG} \cong \overline{FH}, \Delta EBF \cong \Delta EBH$ **Conclusion:** EFGH is a square.

The diagonals bisect each other, so EFGH is a parallelogram.

The diagonals are congruent, so EFGH is a rectangle.

```
Since \Delta EBF \cong \Delta EBH, \overline{EF} \cong \overline{EH}.
```

A pair of consecutive angles are congruent, so EFGH is a rhombus.

Since EFGH is a rectangle and a rhombus, it is a square.

3. Given: ∠ABC is a right angle **Conclusion:** ABCD is a rectangle.

If one angle of a parallelogram is a right angle, then the parallelogram is a rectangle.

To apply this theorem, you need to know that ABCD is a parallelogram .

Therefore, the conclusion is not valid.

4. Given: AB = BC = CD = DA, AC = BDConclusion: ABCD is a square

All four sides are congruent, so ABCD is a rhombus by definition and also a parallelogram.

The diagonals are congruent, so ABCD is a rectangle.

Since ABCD is a rhombus and a rectangle, it is also a square.

7.9 Day 2 Warm Up

Use the points A(-3, 7) & B(5, -3) to find the following:

1. Slope2. Midpoint3. Distance

7.9 Day 2—Special Quadrilaterals Coordinate Proofs

Objective: Use properties of sides, angles, and diagonals to prove special quadrilaterals.

Shape	Sketch	Properties	Coordinate Proofs	Area
Quad.	\sim	 4 sided polygon 		
		• Interior $\angle s$ add to = 360°		
Parallelogram		 Both pairs opp. sides II 	Opp. sides same slope	
		 Both pairs opp. sides ≅ 	Opp. sides same distance	ų
		Diags. bisect e. o.	Diags. same midpoint	- <i>q</i> =
		• Both pairs opp. $\angle s \cong$		A =
		• Consec. $\angle's$ supp.		

Rhombus	 4 sides ≅ w/ diags. ⊥ w/ diags are ∠ bisectors 	 All 4 sides same distance (diags. same midpt.) AND diags slopes are opp. reciprocals 	$A=\frac{1}{2}d_1\cdot d_2$
Rectangle	 4 rt. ∠s 	 Consec. sides slopes are opp. reciprocals (diags. same midpt.) AND diags. same distance 	$A = b \cdot h$
Square	 4 sides ≅ 4 rt. ∠s 	 All sides same distance AND Consec. sides slopes are opp. reciprocals (diags. same midpt.) AND diags slopes are opp. reciprocals (diags. same midpt.) AND diags. same distance 	$A = S^2$

Trapezoid	Exactly one pair of I sides	Only one pair opp. sides have same slope	$(p_1 + p_2) \cdot h$
Isosceles Trapezoid	 One pair opp. sides II Legs are ≅ Diags. are ≅ 	 Only one pair opp. sides have same slope AND Legs same distance or Diags same distance 	$A=\frac{1}{2}(b_1 -$
Kite	 2 pairs consec. sides ≅ (opp. sides not ≅) Diags are ⊥ Only one pair opp. ∠s ≅ 	2 pairs consec. sides have the same distance	$A=\frac{1}{2}d_1\cdot d_2$

Use Coordinate Geometry to determine what kind of Parallelogram the coordinates of four vertices make.

Example: Determine what kind of quadrilateral the four points make.

5. M(-2, -1) A(1, 3) T(5, 0) H(2, -4)

6. P(-1, 3) Q(-2, 5) R(0, 4) S(1, 2)

7. L(-1, 1) M(1, 3) N(3, 1) O(1, -3)

