WORKSHEET 2.1 & 2.2

1.10.1 Remainder Theorem and Factor Theorem

Remainder Theorem:

When a polynomial <i>f</i>	f(x) is divided by $x - a$,	the remainder is $f(a)$
----------------------------	------------------------------	-------------------------

1. Find the remainder when $2x^3+3x^2-17x-30$ is divided by each of the following:

(a) <i>x</i> – 1	(b) <i>x</i> − 2	(C)	<i>x</i> – 3
(d) <i>x</i> + 1	(e) <i>x</i> + 2	(f)	x + 3

Factor Theorem:

If x = a is substituted into a polynomial for x, and the remainder is 0, then x - a is a factor of the polynomial.

- 2. Using the above Theorem and your results from question 1 which of the given binomials are factors of $2x^3+3x^2-17x-30$?
- 3. Using the binomials you determined were factors of $2x^3+3x^2-17x-30$, complete the division (i.e. divide $2x^3+3x^2-17x-30$ by your chosen (x a) and remember to fully factor your result in each case.

1.10.1 Remainder Theorem and Factor Theorem (Answers)

1. Find the remainder when $2x^3+3x^2-17x-30$ is divided by each of the following:

(b) x - 2(a) *x*−1 x-3(C) $\therefore a = 1$ $f(1) = 2(1)^3 + 3(1)^2 - 17(1) - 30$ *a* = 2 a = 3f(1) = 2 + 3 - 17 - 30f(a) = -36f(a) = 0f(1) = -42(d) *x* + 1 (e) x + 2(f) x + 3a = -1a = -2a = -3f(a) = -12f(a) = 0f(a) = -6

2. Using the above Theorem and your results from question 1 which of the given binomials are factors of $2x^3+3x^2-17x-30$?

From results \rightarrow (c) x - 3 and (e) x + 2 are factors

3. Using the binomials you determined were factors of $2x^3+3x^2-17x-30$ complete the division (i.e. divide $2x^3+3x^2-17x-30$ by your chosen x-a) and remember to fully factor your result in each case.

(c)
$$x-3$$

 $(2x^{2}+9x+10$
 $x-3)2x^{3}+3x^{2}-17x-30$
(e) $x+2$
 $(2x^{2}-x-15)$
 $x+2)2x^{3}+3x^{2}-17x-30$
 $(2x^{3}-6x^{2}) \downarrow \downarrow$
 $(9x^{2}-17x) \downarrow$
 $(9x^{2}-27x) \downarrow$
 $(9x^{2}-27x) \downarrow$
 $(10x-30)$
 $(10x-30$

(Note: The results are the same just rearranged.)

1.10.2 Dividing Polynomials Practice

Complete the polynomial divisions below:

1. Without using long division, find each remainder: (a) $(2x^2+6x+8) \div (x+1)$ (b) $(x^2+4x+12) \div (x-4)$

(c)
$$(x^3+6x^2-4x+3) \div (x+2)$$
 (d) $(3x^3+7x^2-2x-11) \div (x-2)$

2. Find each remainder: (a) $(2x^2+x-6) \div (x+2)$ (b) $(x^3+6x^2-4x+2) \div (x+1)$

(c)
$$(x^3 + x^2 - 12x - 13) \div (x - 2)$$
 (d) $(x^4 - x^3 - 3x^2 + 4x + 2) \div (x + 2)$

- 3. When $x^3 + kx^2 4x + 2$ is divided by x + 2 the remainder is 26, find *k*.
- 4. When $2x^3-3x^2+kx-1$ is divided by x-1 the remainder is 2, find *k*.