Name			Period		GP
		GEOMET	RIC PROOFS		
1) I can define, ide	entify and illustrat	e the followin	g terms		
Conjecture	Conclusion		Theorem		Negation
Inductive	Proof		Prove		Counterexample
Deductive	Postulate		Given		
	Dates, assignments	, and quizzes sub	oject to change without o	advance notice.	
	Monday	Tuesday	Block Day	Friday	

INICITUAL	Tuesuay	DIOCK Day	тниау
		3/4	
		Assumptions &	5
		Justifications; Making	
		Conclusions	Fill in the Blank and
			Plan Proofs
		Fill in the Blank Proofs	
8 Student Holiday	9 Writing Proofs	10/11 Practice Quiz Review	12 TEST 4

Wednesday, 10/3 and Thursday, 10/4

Assumptions and Justifications		
Making conclusions		
I can make correct assumptions from a picture, words, or statement.		
I can justify a conclusion with a definition, theorem, or postulate.		
I can make and justify the next logical conclusion from a given statement.		
ASSIGNMENT: Assumptions, Justifications, and Conclusions Worksheet,	Completed:	
pg. 113-114 (4, 7, 8)		

Friday, 10/5

Fill in the Blank and Plan Proofs		
I can write a two column proof given a plan.		
ASSIGNMENT: : pg. 113-114 (4, 7, 8) and Proofs Worksheet #1 Completed:		

Tuesday, 10/9

	Writing Proofs	
I can write a two column proof.		
ASSIGNMENT: Proofs Worksheet #2 Completed:		

Wednesday, 10/10 and Thursday, 10/11

Review		
*I can review for the test in class.		
ASSIGNMENT: Review WS Completed:		

Friday, 10/12

Test 3 – Logic and Proofs		
I can demonstrate knowledge skills, and reasoning ability of ALL previously learned material.		
ASSIGNMENT: Test #3 Grade:		

Assumptions and Justifications

Use page 73 in your book to help complete the notes below...

Things You Can Assume From a Diagram

Things You CAN'T Assume From a Diagram

I. For each picture list the facts you *can* assume from it.

III. For each statement and its next logical conclusion, tell which definition, postulate, or theorem gives the justification.

1. Given: $AM \cong WU$ Conclusion: AM = WU

Why: _____

2. Given: E is the midpoint of *BD* Conclusion: $\overline{BE} \cong \overline{ED}$

Why: _____

3. Given: A bisects \overline{CT} Conclusion: $\overline{CA} \cong \overline{AT}$

Why: _____

4. Given: CO = OLConclusion: $\overline{CO} \cong \overline{OL}$

Why: _____

5. Given: $\measuredangle DAY$ and $\measuredangle YAK$ are a linear pair. Conclusion: $\measuredangle DAY \And \measuredangle YAK$ are supplementary

Why: _____

6. Given: $\measuredangle TOM$ is the supplement of $\measuredangle SUE$ Conclusion: $m\measuredangle TOM + m\measuredangle SUE = 180^{\circ}$

Why:

7. Given: A and B lie in Plane JOG Conclusion: A and B are collinear

Why: _____

8. Given: A is in the interior of $\measuredangle GLD$ Conclusion: $m \measuredangle GLA + m \measuredangle ALD = m \measuredangle GLD$

Why: _____

9. Given: $\measuredangle 1$ is the complement to $\measuredangle 3$ Conclusion: $m\measuredangle 1 + m\measuredangle 3 = 90^{\circ}$

Why: _____

10. Given: $\measuredangle HAM$ is vertical to $\measuredangle EAT$ Conclusion: $\measuredangle HAM \cong \measuredangle EAT$

Why: _____

R

Ν

11. Given:

Conclusion: U is the midpoint of RN

Why: _____

8

12. Given:

Conclusion: $\measuredangle 8$ and $\measuredangle 9$ are vertical

Why: _____

13. Given: $m \measuredangle NAT + m \measuredangle WED = 90^{\circ}$ Conclusion: $\measuredangle NAT \& \measuredangle WED$ are complementary

Why: _____

14. Given: $FA \cong RM$ Conclusion: FA = RM

Why: _____

15. Given: MA = THConclusion: $\overline{MA} \cong \overline{TH}$

Why: _____

16. Given: $m \measuredangle AFD + m \measuredangle BAT = 180^{\circ}$ Conclusion: $\measuredangle AFD \And \measuredangle BAT$ are supplementary

Why: _____

17. Given:

Conclusion: $\measuredangle FRO \cong \measuredangle ORG$

Why: _____

18. Given: $m \measuredangle 2 = m \measuredangle 6$ Conclusion: $\measuredangle 2 \cong \measuredangle 6$

Why: _____

Name: _____

Period:_____

Making Conclusions

1.	Given: $\overline{TO} \cong \overline{AN}$		M K_
	Conclusion:		I I f
	Justification:		iven: I
2.	Given: E is the midpoint of \overline{BD}		onclusion:
	Conclusion:		
	Justification:	9. G	iven: E F G
3.	Given: A bisects \overline{CT}		onclusion:
	Conclusion:		
	Justification:		F D C
4.	Given: $CO = OL$	10. G	iven:
	Conclusion:	C	onclusion:
	Justification:	Ju	stification:
5.	Given: $\measuredangle DAY$ and $\measuredangle YAK$ are a linear pair	11. G	iven: $m \measuredangle ABC = m \measuredangle HIJ$
	Conclusion:	C	onclusion:
	Justification:	Ju	stification:
6.	Given: $\measuredangle TOM$ is the supplement of $\measuredangle SUE$	12. G	iven: $\measuredangle CAT$ and $\measuredangle RAP$ are vertical angles.
	Conclusion:	C	onclusion:
	Justification:	Ju	stification:
	$\begin{array}{c} T \\ T \\ M \\ 6 \\ 5 \\ S \\ U \\ \end{array}$	13. G	iven: $\measuredangle SAT \cong \measuredangle ACT$
7.	Given: U	C	onclusion:
	Conclusion:	Ju	stification:
	Justification:	14. G	iven: A is in the interior of $\measuredangle GLD$
		C	onclusion:
		Ju	stification:

15. Given: $\overline{FA} \cong \overline{RM}$	
Conclusion:	21. Given:
Justification:	Conclusion:
16. Given: $\measuredangle HAM$ is vertical to $\measuredangle EAT$	Justification:
Conclusion:	MŽ t
Justification:	K K
• <u></u>	22. Given:
R U N 17. Given:	Conclusion:
Conclusion:	Justification:
Justification:	23. Given: $\measuredangle PAI$ and $\measuredangle IAR$ are a linear pair
▲ 8	Conclusion:
18. Given;	Justification:
Conclusion:	24. Given: $\measuredangle CAT$ and $\measuredangle RAP$ are complementary
Justification:	angles.
19. Given: $m \measuredangle NAT + m \measuredangle WED = 90^{\circ}$	Conclusion:
Conclusion:	Justification:
Justification:	25. Given: $m \measuredangle NAT + m \measuredangle WED = 180^{\circ}$
20. Given: \overrightarrow{UB} bisects $\measuredangle RUY$	Conclusion:
	Justification:
Conclusion:	26. Given: A is between J and M
Justification:	Conclusion:
	Justification:

"Making Conclusions" Worksheet continues on the next page...

For #27 and 28, a two column proof is given but **steps are missing.** Fill in the missing steps and **rewrite** the whole proof **correctly**.

$$27. \underbrace{1 2}_{3 4}$$

Given: $\measuredangle 1$ is supplementary to $\measuredangle 2$, $\measuredangle 3$ is supplementary to $\measuredangle 4$, and $\measuredangle 2 \cong \measuredangle 4$

Prove: $\measuredangle 1 \cong \measuredangle 3$

Pro	Prove: $\measuredangle 1 \cong \measuredangle 3$		
Sta	tements	Reasons	
1.	$\measuredangle 1 \& \measuredangle 2$ are supp. $\measuredangle 3 \& \measuredangle 4$ are supp.	Given	
2.	$m\measuredangle 1 + m\measuredangle 2 = 180^{\circ}$ $m\measuredangle 3 + m\measuredangle 4 = 180^{\circ}$	Def. of Supplement.	
3.	$m\measuredangle 1 + m\measuredangle 2 = m\measuredangle 3 + m\measuredangle 4$	Transitive Prop.	
4.			
5.			
6.	$m\measuredangle 1 + m\measuredangle 4 = m\measuredangle 3 + m\measuredangle 4$	Substitution prop, Steps and	
7.	$m\measuredangle 1 \cong m\measuredangle 3$	Subtraction prop.	
8.	$\measuredangle 1 \cong \measuredangle 3$	Def. of ≅	

 $28. \qquad M \underbrace{7 }_{I} \underbrace{7 }_{5} \underbrace{K}_{E}$

Given: $\measuredangle 5$ is complementary to $\measuredangle 7$

Prove: $\overline{MI} \perp \overline{IE}$

Statements		Reasons
1.	$\measuredangle 5 \& \measuredangle 7$ are comp.	Given
2.	$m\measuredangle 5 + m\measuredangle 7 = 90^{\circ}$	Def. of complement.
3.		
4.	$m \measuredangle MIE = 90^{\circ}$	Substitution, steps and
6.	$\overline{MI} \perp \overline{IE}$	Definition of perpendicular

P 113 (4, 7, 8)

4. Fill in the blanks to complete the two-column proof.

Given: $\angle 2 \cong \angle 3$

Prove: $\angle 1$ and $\angle 3$ are supplementary. **Proof:**

Statements	Reasons
1. ∠2 ≅ ∠3	1. Given
2. m∠2 = m∠3	2. a. <u>?</u>
3. b. <u>?</u>	3. Lin. Pair Thm.
4. m∠1 + m∠2 = 180°	4. Def. of supp. 🛦
5. m∠1 + m∠3 = 180°	5. c. ? Steps 2, 4
6. d. <u>?</u>	6. Def. of supp. 🛓

Fill in the blanks to complete each two-column proof.

- **7.** Given: $\angle 1$ and $\angle 2$ are supplementary, and
 - ∠3 and ∠4 are supplementary.

```
\angle 2\cong \angle 3
```

Prove: $\angle 1 \cong \angle 4$

Proof:

Statements	Reasons
 ∠1 and ∠2 are supplementary. ∠3 and ∠4 are supplementary. 	1. Given
2. a	2. Def. of supp. 🖄
3. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$	3. b. <u>?</u>
4. ∠2 ≅ ∠3	4. Given
5. m∠2 = m∠3	5. Def. of $\cong \underline{\&}$
6. c. <u>?</u>	6. Subtr. Prop. of = Steps 3, 5
7. ∠1 ≅ ∠4	7. d. <u>?</u>

8. Given: $\angle BAC$ is a right angle. $\angle 2 \cong \angle 3$ **Prove:** $\angle 1$ and $\angle 3$ are complementary.

Proof:

Statements	Reasons
1. $\angle BAC$ is a right angle.	1. Given
2. m $\angle BAC = 90^{\circ}$	2. a
3. b. <u>?</u>	3. ∠ Add. Post.
4. $m \angle 1 + m \angle 2 = 90^{\circ}$	4. Subst. Steps 2, 3
5. ∠2 ≅ ∠3	5. Given
6. c. <u>?</u>	6. Def. of \cong \land
7. m∠1 + m∠3 = 90°	7. d. <u>?</u> Steps 4, 6
8. e. ?	8. Def. of comp. 🖄

$$B \xrightarrow{1}_{2} \xrightarrow{3}_{3}$$

Proofs Worksheet #1

On a separate paper, write a two-column proof for each problem 1-5. Follow the plan provided for help.

1. Given: $\overline{RT} \cong \overline{SU}$ Prove: RS = TU

Plan: Use the definition of congruent segments to write the given information in terms of lengths. Next use the Segment Addition Postulate to write RT in terms of RS + ST and SU as ST + TU. Substitute those into the given information and use the Subtraction Property of Equality to eliminate ST and leave RS = TU.

Plan: Use the Linear Pair Theorem to show that $\measuredangle 5$ and $\measuredangle 6$ are supplementary. Then use the definition of supplementary angles to show that their measures add up to 180°. Finally use substitution and then subtraction to arrive at the "Prove" statement.

3. Given: AB = BCBC = BD Prove: B is the midpoint of \overline{AD}

Plan: Write the "Given" information and use the transitive property to show that AB=BD. Then use the definition of congruence to show that the segments are congruent and the definition of midpoint to finish the proof.

4. Given: ℓ bisects MN at P Prove: MP = PN

Plan: Use the definition of bisect to show the two smaller segments are congruent. Then use the definition of congruence to show that their lengths are equal.

Plan: Use the definition of supplementary angles and congruent angles to write the given information in terms of angle measures. Next use substitution to show that $m\measuredangle 3 + m\measuredangle 2 = 180^\circ$. Then use the definition of supplementary angles for the conclusion.

Given: O is the midpoint of *MN* OM = OW Prove: OW = ON

Given: $m \measuredangle 1 = 90^{\circ}$ Prove: $m \measuredangle 2 = 90^{\circ}$

5.

Given: $m\measuredangle 1 = m\measuredangle 3$ Prove: $m\measuredangle JOL = m\measuredangle KOM$

9.
$$\overrightarrow{A}$$
 \overrightarrow{B} \overrightarrow{C} \overrightarrow{D}
Given: $\overrightarrow{AB} \cong \overrightarrow{CD}$
Prove: $\overrightarrow{AC} \cong \overrightarrow{BD}$

Given: $\measuredangle 1 \cong \measuredangle 2$ Prove: $\measuredangle 1$ and $\measuredangle 2$ are right angles

Given: AB = CD Prove: AC = BD

Given: $\measuredangle 1$ and $\measuredangle 2$ are complementary $\measuredangle 3$ and $\measuredangle 2$ are complementary Prove: $m\measuredangle 1 = m\measuredangle 3$

Given: $m \measuredangle 1 = 90^{\circ}$ Prove: $m \measuredangle 2 + 90 = 180$

8.

Given: $\overline{EF} \perp \overline{EG}$ D is in the interior of $\measuredangle FEG$ Prove: $\measuredangle FED$ and $\measuredangle DEG$ are complementary

Given: $\measuredangle 1$ and $\measuredangle 2$ are complementary Prove: $\measuredangle 2$ and $\measuredangle 3$ are complementary

Given: $m \measuredangle 2 = 2(m \measuredangle 1)$

Prove: $m \measuredangle 1 = 60^{\circ}$

Given: $\measuredangle ABC$ is a right angle

Given:
$$\overline{CD} \cong \overline{EF}$$

 $\overline{CD} \cong \overline{FG}$
Prove: E is the midpoint of \overline{EG}

Prove: F is the midpoint of EG

Prove: $\overline{KH} \cong \overline{UF}$

Given: $\measuredangle ABD$ and $\measuredangle CDB$ are right angles $m\measuredangle 2 = m\measuredangle 4$ Prove: $m \measuredangle 1 = m \measuredangle 3$

Given: $m \measuredangle ABC = m \measuredangle CBD$ Prove: \overrightarrow{BC} is the angle bisector of $\measuredangle ABD$

Given: $m \measuredangle ABE = m \measuredangle CBE$ Prove: $\measuredangle ABD$ and $\measuredangle DBE$ are complementary

14.

18.