\qquad
\qquad

Geometric Proofs

1) I can define, identify and illustrate the following terms			
Conjecture	Conclusion	Theorem	Negation
Inductive	Proof	Prove	Counterexample
Deductive	Postulate	Given	

Monday	Tuesday	Block Day	Friday
		3/4 Assumptions \& Justifications; Making Conclusions Fill in the Blank Proofs	5 Fill in the Blank and Plan Proofs
8 Student Holiday	9 Writing Proofs	10/11 Practice Quiz Review	$12 \text { TEST } 4$

Wednesday, 10/3 and Thursday, 10/4

Assumptions and Justifications Making conclusions	
I can make correct assumptions from a picture, words, or statement.	
I can justify a conclusion with a definition, theorem, or postulate.	
I can make and justify the next logical conclusion from a given statement. ASSIGNMENT: Assumptions, Justifications, and Conclusions Worksheet, pg. 113-114 $(4,7,8)$ Completed:	

Friday, 10/5

Fill in the Blank and Plan Proofs		
I can write a two column proof given a plan.		
ASSIGNMENT: : pg. 113-114 $(4,7,8)$ and Proofs Worksheet \#1	Completed:	

Tuesday, 10/9

Writing Proofs	
I can write a two column proof.	Completed:
ASSIGNMENT: Proofs Worksheet \#2	

Wednesday, 10/10 and Thursday, 10/11

Review	
*I can review for the test in class.	Completed:
ASSIGNMENT: Review WS	

Friday, 10/12

Test 3 - Logic and Proofs	
I can demonstrate knowledge skills, and reasoning ability of ALL previously learned material.	
ASSIGNMENT: Test \#3	Grade:

I. For each picture list the facts you can assume from it.

II. Based on the picture alone, determine if each statement is true or false.

1. $\overleftrightarrow{E T} \| \overrightarrow{S R}$
2. $\measuredangle M E S$ is a right angle.
3. T is between E and H.
4. M, O, S, and H are coplanar.
5. $\overline{M O} \cong \overline{O E}$
6. $\measuredangle O E T \cong \measuredangle T E S$
7. O and R are collinear.
8. $\measuredangle M T H$ is a right angle.

9. $\measuredangle A E B$ is an acute angle. $6 . \measuredangle B E C$ and $\measuredangle E C B$ are supplementary.
10. $\overline{A E} \| \overline{B C}$
11. $\measuredangle A E B$ and $\measuredangle B E C$ are complementary.

12. C is the midpoint of $\overline{B D}$.
13. $\measuredangle B C E$ and $\measuredangle E C D$ are a linear pair.
14. $\measuredangle A B E$ and $\measuredangle E B C$ are complementary.
III. For each statement and its next logical conclusion, tell which definition, postulate, or theorem gives the justification.
15. Given: $\overline{A M} \cong \overline{W U}$

Conclusion: $A M=W U$

Why:
2. Given: E is the midpoint of $\overline{B D}$

Conclusion: $\overline{B E} \cong \overline{E D}$

Why: \qquad
3. Given: A bisects $\overline{C T}$

Conclusion: $\overline{C A} \cong \overline{A T}$

Why: \qquad
4. Given: $\mathrm{CO}=\mathrm{OL}$

Conclusion: $\overline{C O} \cong \overline{O L}$

Why: \qquad
5. Given: $\measuredangle D A Y$ and $\measuredangle Y A K$ are a linear pair. Conclusion: $\measuredangle D A Y \& \measuredangle Y A K$ are supplementary

Why: \qquad
6. Given: $\measuredangle T O M$ is the supplement of $\measuredangle S U E$

Conclusion: $m \measuredangle T O M+m \measuredangle S U E=180^{\circ}$

Why: \qquad
7. Given: A and B lie in Plane JOG

Conclusion: A and B are collinear

Why: \qquad
8. Given: A is in the interior of $\measuredangle G L D$

Conclusion: $m \measuredangle G L A+m \measuredangle A L D=m \measuredangle G L D$

Why: \qquad
9. Given: $\measuredangle 1$ is the complement to $\measuredangle 3$

Conclusion: $m \npreceq 1+m \npreceq 3=90^{\circ}$

Why: \qquad
10. Given: $\measuredangle H A M$ is vertical to $\measuredangle E A T$

Conclusion: $\measuredangle H A M \cong \measuredangle E A T$

Why: \qquad

11. Given:

Conclusion: U is the midpoint of $\overline{R N}$

Why: \qquad
12. Given:

Conclusion: $\measuredangle 8$ and $\measuredangle 9$ are vertical

Why: \qquad
13. Given: $m \measuredangle N A T+m \measuredangle W E D=90^{\circ}$

Conclusion: $\measuredangle N A T \& \measuredangle W E D$ are complementary

Why: \qquad
14. Given: $\overline{F A} \cong \overline{R M}$

Conclusion: $F A=R M$

Why: \qquad
15. Given: $\mathrm{MA}=\mathrm{TH}$

Conclusion: $\overline{M A} \cong \overline{T H}$

Why: \qquad
16. Given: $m \measuredangle A F D+m \measuredangle B A T=180^{\circ}$

Conclusion: $\measuredangle A F D \& \measuredangle B A T$ are supplementary
Why: \qquad

17. Given:

Conclusion: $\measuredangle F R O \cong \measuredangle O R G$

Why: \qquad
18. Given: $m \measuredangle 2=m \measuredangle 6$

Conclusion: $\measuredangle 2 \cong \measuredangle 6$

Why: \qquad
\qquad Period: \qquad

Making Conclusions

1. Given: $\overline{T O} \cong \overline{A N}$

Conclusion: \qquad
Justification: \qquad
2. Given: E is the midpoint of $\overline{B D}$

Conclusion: \qquad
Justification: \qquad
3. Given: A bisects $\overline{C T}$

Conclusion: \qquad
Justification: \qquad
4. Given: $\mathrm{CO}=\mathrm{OL}$

Conclusion: \qquad
Justification: \qquad
5. Given: $\measuredangle D A Y$ and $\measuredangle Y A K$ are a linear pair Conclusion: \qquad
Justification: \qquad
6. Given: $\measuredangle T O M$ is the supplement of $\measuredangle S U E$ Conclusion: \qquad
Justification: \qquad
7. Given:

Conclusion: \qquad
Justification: \qquad
8. Given:

Conclusion: \qquad
Justification: \qquad
9. Given:

Conclusion \qquad
Justification: \qquad
10. Given:

Conclusion: \qquad
Justification: \qquad
11. Given: $m \measuredangle A B C=m \measuredangle H I J$

Conclusion: \qquad
Justification: \qquad
12. Given: $\measuredangle C A T$ and $\measuredangle R A P$ are vertical angles.

Conclusion: \qquad
Justification: \qquad
13. Given: $\measuredangle S A T \cong \measuredangle A C T$

Conclusion: \qquad
Justification: \qquad
14. Given: A is in the interior of $\measuredangle G L D$

Conclusion: \qquad
Justification: \qquad
15. Given: $\overline{F A} \cong \overline{R M}$

Conclusion: \qquad
Justification: \qquad
16. Given: $\measuredangle H A M$ is vertical to $\measuredangle E A T$

Conclusion: \qquad
Justification: \qquad

17. Given:

Conclusion: \qquad
Justification: \qquad
18. Given;

Conclusion: \qquad
Justification: \qquad
19. Given: $m \measuredangle N A T+m \measuredangle W E D=90^{\circ}$

Conclusion: \qquad
Justification: \qquad
20. Given: $\overrightarrow{U B}$ bisects $\measuredangle R U Y$

Conclusion: \qquad
Justification: \qquad
21. Given:

Conclusion: \qquad
Justification: \qquad
22. Given:

Conclusion: \qquad
Justification: \qquad
23. Given: $\measuredangle P A I$ and $\measuredangle I A R$ are a linear pair

Conclusion: \qquad
Justification: \qquad
24. Given: $\measuredangle C A T$ and $\measuredangle R A P$ are complementary angles.

Conclusion: \qquad
Justification: \qquad
25. Given: $m \measuredangle N A T+m \measuredangle W E D=180^{\circ}$

Conclusion: \qquad
Justification: \qquad
26. Given: A is between J and M

Conclusion: \qquad
Justification: \qquad

"Making Conclusions" Worksheet continues on the next page...

For \#27 and 28, a two column proof is given but steps are missing. Fill in the missing steps and rewrite the whole proof correctly.
27.

Given: $\measuredangle 1$ is supplementary to $\measuredangle 2, \measuredangle 3$ is supplementary

$$
\text { to } \measuredangle 4 \text {, and } \measuredangle 2 \cong \measuredangle 4
$$

Prove: $\measuredangle 1 \cong \measuredangle 3$
Statements

Def. of Supplement.

Transitive Prop.
4.
5.
6. $m \measuredangle 1+m \measuredangle 4=m \measuredangle 3+m \measuredangle 4$
7. $m \measuredangle 1 \cong m \measuredangle 3$
8. $\measuredangle 1 \cong \measuredangle 3$

Substitution prop,
Steps \qquad and \qquad
Subtraction prop.

Def. of \cong
28.

Given: $\measuredangle 5$ is complementary to $\measuredangle 7$
Prove: $\overline{M I} \perp \overline{I E}$

Statements	Reasons	
1.	$\measuredangle 5 \& \measuredangle 7$ are comp.	Given
2.	$m \npreceq 5+m \measuredangle 7=90^{\circ}$	Def. of complement.
3.		
4.	$m \measuredangle M I E=90^{\circ}$	Substitution, steps _ and _-
6.	$\overline{M I} \perp \overline{I E}$	Definition of perpendicular

P $113(4,7,8)$
4. Fill in the blanks to complete the two-column proof.

Given: $\angle 2 \cong \angle 3$
Prove: $\angle 1$ and $\angle 3$ are supplementary.

Proof:

Statements	Reasons
1. $\angle 2 \cong \angle 3$	1. Given
2. $\mathrm{m} \angle 2=\mathrm{m} \angle 3$	2. a. ?
3. b. ?	3. Lin. Pair Thm.
4. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=180^{\circ}$	
5. $\mathrm{m} \angle 1+\mathrm{m} \angle 3=180^{\circ}$	5. c. ? Steps 2, 4
6. d. ?	6. Def. of supp. ® $^{\text {s }}$

Fill in the blanks to complete each two-column proof.
7. Given: $\angle 1$ and $\angle 2$ are supplementary, and $\angle 3$ and $\angle 4$ are supplementary. $\angle 2 \cong \angle 3$
Prove: $\angle 1 \cong \angle 4$

Proof:

Statements	Reasons
1. $\angle 1$ and $\angle 2$ are supplementary. $\angle 3$ and $\angle 4$ are supplementary. 2. a. \qquad ? 3. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle 3+\mathrm{m} \angle 4$ 4. $\angle 2 \cong \angle 3$ 5. $\mathrm{m} \angle 2=\mathrm{m} \angle 3$ 6. c. ? 7. $\angle 1 \cong \angle 4$	1. Given 2. Def. of supp. E 3. b. \qquad ? 4. Given 5. Def. of $\cong \&$ 6. Subtr. Prop. of $=$ Steps 3, 5 7. d. ?

8. Given: $\angle B A C$ is a right angle. $\angle 2 \cong \angle 3$

Prove: $\angle 1$ and $\angle 3$ are complementary.

Proof:

Statements	Reasons
1. $\angle B A C$ is a right angle.	1. Given
2. $\mathrm{m} \angle B A C=90^{\circ}$	2. a. ?
3. b. ?	3. \angle Add. Post.
4. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=90^{\circ}$	4. Subst. Steps 2, 3
5. $\angle 2 \cong \angle 3$	5. Given
6. c. ?	6. Def. of $\cong \&$
7. $\mathrm{m} \angle 1+\mathrm{m} \angle 3=90^{\circ}$	7. d. ? Steps 4, 6
8. e. ?	8. Def. of comp. \otimes_{s}

\qquad Period: \qquad

Proofs Worksheet \#1

On a separate paper, write a two-column proof for each problem 1-5. Follow the plan provided for help.

1. Given: $\overline{R T} \cong \overline{S U}$

Prove: RS = TU

Plan: Use the definition of congruent segments to write the given information in terms of lengths. Next use the Segment Addition Postulate to write RT in terms of RS + ST and SU as ST + TU. Substitute those into the given information and use the Subtraction Property of Equality to eliminate ST and leave $R S=T U$.
2. Given: $m \measuredangle 5=47^{\circ}$

Prove: $m \measuredangle 6=133^{\circ}$

Plan: Use the Linear Pair Theorem to show that $\measuredangle 5$ and $\measuredangle 6$ are supplementary. Then use the definition of supplementary angles to show that their measures add up to 180°. Finally use substitution and then subtraction to arrive at the "Prove" statement.
3. Given: $\mathrm{AB}=\mathrm{BC}$
$\mathrm{BC}=\mathrm{BD}$
Prove: B is the midpoint of $\overline{A D}$

Plan: Write the "Given" information and use the transitive property to show that $A B=B D$. Then use the definition of congruence to show that the segments are congruent and the definition of midpoint to finish the proof.
4. Given: ℓ bisects $\overline{M N}$ at P

Prove: MP = PN

Plan: Use the definition of bisect to show the two smaller segments are congruent. Then use the definition of congruence to show that their lengths are equal.
5. Given: $\measuredangle 1$ and $\measuredangle 2$ are supplementary; $\measuredangle 1 \cong \measuredangle 3$

Prove: $\measuredangle 3$ and $\measuredangle 2$ are supplementary
Plan: Use the definition of supplementary angles and congruent angles to write the given information in terms of angle measures. Next use substitution to show that $m \measuredangle 3+m \measuredangle 2=180^{\circ}$. Then use the definition of supplementary angles for the conclusion.
1.

Given: O is the midpoint of $\overline{M N}$ $\mathrm{OM}=\mathrm{OW}$
Prove: OW = ON
3.

Given: $m \npreceq 1=90^{\circ}$
Prove: $m \npreceq 2=90^{\circ}$

Given: $m \measuredangle 1=m \measuredangle 3$
Prove: $m \measuredangle J O L=m \measuredangle K O M$
7.

Given: $\overline{P R} \cong \overline{L N}$
Q is the midpoint of $\overline{P R}$
M is the midpoint of $\overline{L N}$
Prove: $\mathrm{PQ}=\mathrm{LM}$
9.

Given: $\overline{A B} \cong \overline{C D}$
Prove: $\overline{A C} \cong \overline{B D}$
11.

Given: $\measuredangle 1 \cong \measuredangle 2$
Prove: $\measuredangle 1$ and $\measuredangle 2$ are right angles

Given: $\mathrm{AB}=\mathrm{CD}$
Prove: $\mathrm{AC}=\mathrm{BD}$
4.

Given: $\measuredangle 1$ and $\measuredangle 2$ are complementary $\measuredangle 3$ and $\measuredangle 2$ are complementary
Prove: $m \measuredangle 1=m \measuredangle 3$
6.

Given: $m \measuredangle 1=90^{\circ}$
Prove: $m \npreceq 2+90=180$

Given: $\overline{E F} \perp \overline{E G}$
D is in the interior of $\measuredangle F E G$
Prove: $\measuredangle F E D$ and $\measuredangle D E G$ are complementary
10.

Given: $\measuredangle 1$ and $\measuredangle 2$ are supplementary

$$
\measuredangle 1 \cong \measuredangle 2
$$

Prove: $\measuredangle 1$ and $\measuredangle 2$ ar right angles
12.

Given: $\measuredangle 1$ and $\measuredangle 2$ are complementary
Prove: $\measuredangle 2$ and $\measuredangle 3$ are complementary
13.

Given: $m \measuredangle 2=2(m \measuredangle 1)$

Prove: $m \measuredangle 1=60^{\circ}$
15.

Given: $\measuredangle A B C$ is a right angle

Prove: $\measuredangle 1$ and $\measuredangle 2$ are complementary
17.

Given: $\mathrm{KU}=\mathrm{HF}$
Prove: $\overline{K H} \cong \overline{U F}$
19.

Given: $m \npreceq A B C=m \measuredangle C B D$
Prove: $\overrightarrow{B C}$ is the angle bisector of $\measuredangle A B D$
14.

Given: $\overline{A D}$ bisects $\measuredangle B A C$ $\measuredangle 1 \cong \measuredangle 3$
Prove: $\measuredangle 2 \cong \measuredangle 3$

16.

Given: $\overline{C D} \cong \overline{E F}$ $\overline{C D} \cong \overline{F G}$
Prove: F is the midpoint of $\overline{E G}$
18.

Given: $\measuredangle A B D$ and $\measuredangle C D B$ are right angles $m \measuredangle 2=m \measuredangle 4$
Prove: $m \measuredangle 1=m \measuredangle 3$
20.

Given: $m \measuredangle A B E=m \measuredangle C B E$
Prove: $\measuredangle A B D$ and $\measuredangle D B E$ are complementary

