Selected-Response

Look at the triangle.

Which triangle is similar to the given triangle?

A.

В.

C.

D.

Constructed-Response

The following are the steps to construct an equilateral triangle.

Determine the error in the steps. Write your answer on the lines provided.

Extended Constructed-Response

Right $\triangle ABC$ with altitude BD.

Prove $\triangle ABC$ is similar to $\triangle BDC$.

Statement	Reason

Item 4

Technology-Enhanced

Triangle ABC is similar but not congruent to triangle DEF.

Part A

Which series of transformations could map triangle ABC onto triangle DEF?

- **A.** translation 4 units up, rotation 75° about the origin
- **B.** reflection across the line y = 2, rotation 90° about the origin
- C. translation 3 units left, dilation of scale factor 2 centered at the origin
- **D.** reflection across the line x = 1, reflection across the line y = 5

Part B

Which equation must be true about triangle ABC and triangle DEF?

- **A.** AB = DE
- **B.** AC = EF
- **C.** $m \angle A + m \angle B = m \angle D + m \angle F$
- **D.** $m \angle A + m \angle C = m \angle D + m \angle F$

Selected-Response

Which equation is true?

- A. $\sin 40^\circ = \tan 50^\circ$
- **B.** $\cos 40^{\circ} = \cos 50^{\circ}$
- **C.** $\sin 40^{\circ} = \sin 50^{\circ}$
- **D.** $\cos 40^{\circ} = \sin 50^{\circ}$

Item 6

Technology-Enhanced

Triangle *GHJ* is a right triangle. Angle *G* has a measure of g° , angle *H* has a measure of h° , and angle *J* is a right angle.

Part A

Select TWO equations that must be true.

- **A.** $sin(h^{\circ}) = sin(g^{\circ})$
- **B.** $cos(g^{\circ}) = sin(h^{\circ})$
- **C.** $cos(h^\circ) = cos(g^\circ)$
- **D.** $sin(h^\circ) + cos(h^\circ) = sin(g^\circ) + cos(g^\circ)$
- **E.** $\sin(g^\circ) + \cos(h^\circ) = \cos(g^\circ) + \sin(h^\circ)$

Part B

Given that $tan(g^\circ) = \frac{sin(g^\circ)}{cos(g^\circ)}$, which ratio must have a value equivalent to the tangent of g° ?

- A. $\frac{\cos(h^\circ)}{\sin(g^\circ)}$
- $\mathbf{B.} \ \frac{\cos(h^{\circ})}{\sin(h^{\circ})}$
- $\mathbf{C.} \quad \frac{\sin(h^\circ)}{\cos(h^\circ)}$
- **D.** $\frac{\sin(h^\circ)}{\cos(g^\circ)}$

Selected-Response

Which point is NOT on a circle with a center of (0, 0) and a radius of 10?

- **A.** (0, 5)
- **B.** (10, 0)
- **C.** (0, -10)
- **D.** (-8, 6)

Constructed-Response

Study the triangle.

Explain how you can determine the value of $\sin x$. Use the word theta in your explanation instead of the symbol. Write your answer on the lines provided.

<u> </u>

Cons	structe	d-Res	sponse
OULIS	ou acu	, u i i i i	polisc

Explain why the formula for the area of a sector is $A=\frac{\pi r^2\theta}{360}$, where r is the radius of the circle and θ is the measure in degrees of the central angle of the sector. Use the word pi in your explanation instead of the symbol π . Write your answer on the lines provided.

Technology-Enhanced

The figure shows circle C with tangent lines \overline{QR} and \overline{SR} .

The measure of $\angle QCS$ is x° .

Select THREE statements that are true about the figure.

- **A.** The measure of $\angle QPS$ is $(90 x)^{\circ}$.
- **B.** The measure of $\angle QPS$ is $\frac{1}{2}x^{\circ}$.
- **C.** The measure of $\angle PSR$ is 90°.
- **D.** The measure of $\angle CQR$ is 90°.
- **E.** The measure of $\angle QRS$ is $(180 x)^{\circ}$.
- **F.** The measure of $\angle QRS$ is $2x^{\circ}$.

Selected-Response

Points A, B, C, D, and E are located on the circle O, as shown in this figure.

The measure of $\widehat{\mathcal{CD}}$ is 80°. What is the value of x?

- **A.** 50
- **B.** 40
- **C.** 35
- **D.** 25

Constructed-Response

A pyramid and a rectangular prism have congruent bases and equal heights. Write a statement comparing the volume of the figures, and explain your reasoning. Write your answer on the lines provided.

Selected-Response

What is the sequence of transformations that carry triangle ABC to triangle QRS?

- **A.** Triangle *ABC* is reflected across the line x = 3. Then it is translated 2 units down.
- **B.** Triangle ABC is reflected across the line x = 3. Then it is translated 6 units down.
- **C.** Triangle *ABC* is translated 2 units to the left. Then it is rotated 90 degrees counterclockwise about the point (1, 1).
- **D.** Triangle *ABC* is translated 2 units to the right. Then it is rotated 90 degrees counterclockwise about the point (1, 1).

Item 14

Selected-Response

Which transformation on quadrilateral *ABCD* produces an image that does not preserve distance between points in quadrilateral *ABCD*?

- **A.** reflection across y = x
- B. translation 3 units down and 4 units to the right
- **C.** dilation by a scale factor of 2
- **D.** rotation of 270 degrees

Item 15

Selected-Response

Look at quadrilateral QRST.

What is the image of point R after a counterclockwise rotation of 270 degrees about the origin?

- **A.** (6, –3)
- **B.** (-3, 6)
- **C.** (-6, 3)
- **D.** (3, –6)

Selected-Response

Look at the square WXYZ on this coordinate plane.

What is the perimeter of the square WXYZ?

- A. 20 units
- **B.** 25.6 units
- **C.** 32 units
- **D.** 40.9 units

Item 17

Selected-Response

What is the coordinate of point P that lies along the directed line segment from Q(2, 5) to R(7, 12) and partitions the segment in the ratio of 3 to 2?

- **A.** (3, 4.2)
- **B.** (4.5, 8.5)
- **C.** (5, 9.2)
- **D.** (5, 7)

Selected-Response

What is the equation of a line that is perpendicular to $y = \frac{1}{2}x - 6$ and passes through the point (6, 4)?

A.
$$y = -\frac{1}{2}x + 1$$

B.
$$y = -\frac{1}{2}x + 7$$

C.
$$y = -2x - 8$$

D.
$$y = -2x + 16$$

Selected-Response

Study this equation of a circle.

$$x^2 - 6x + y^2 + 2y + 6 = 0$$

Which of these represents the center and radius of the circle?

- **A.** center: (3, -1), radius: 4
- **B.** center: (-3, 1), radius: 4
- **C.** center: (3, −1), radius: 2
- **D.** center: (-3, 1), radius: 2

Item 20

Selected-Response

What proves that figure ABCD is a parallelogram?

- A. Diagonal BD bisects angle ABC.
- **B.** Side AB is equal to diagonal AC.
- C. Diagonals BD and AC bisect one another.
- **D.** Diagonal *BD* is greater than diagonal *AC*.

Constructed-Response

One bag of lawn fertilizer can cover approximately 5,000 square feet. Mike's lawn is about 500 square feet. When Mike applies fertilizer to his lawn, he applies it to $\frac{3}{4}$ of his lawn only.

Part A: About how many complete times can Mike fertilize his lawn with c fertilizer?	ne bag of
Part B: Mike fertilizes his lawn an average of 4 times per year. About how years will he be able to fertilize his lawn with one bag of fertilizer?	many full

Item 22

Constructed-Response

A student draws a card from a standard deck and then draws another card without replacing the first card. Explain why the probability of picking an ace on the first draw and the probability of picking a 7 on the second draw are NOT independent events. Write your answer on the lines provided.

Selected-Response

When rolling a fair, six-sided number cube, what is the probability of rolling an even number or a number less than 3?

- **A.** $\frac{5}{6}$
- **B.** $\frac{2}{3}$
- **c.** $\frac{1}{2}$
- **D.** $\frac{1}{3}$

Item 24

Selected-Response

What is the probability of rolling a 5 on a fair, six-sided number cube if you know that you rolled an odd number?

- A. $\frac{1}{6}$
- **B.** $\frac{1}{3}$
- **c**. $\frac{1}{2}$
- **D.** $\frac{2}{3}$