Probability of Poker Hands

Drew Armstrong armstron@math.umn.edu

November 1, 2006

In a standard deck of cards, there are 4 possible suits (clubs, diamonds, hearts, spades), and 13 possible values (2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, Ace). Let A, J, Q, K represent Ace, Jack, Queen and King, respectively. Every card has a suit and value, and every combination is possible. Hence a standard deck contains $13 \cdot 4 = 52$ cards.

A "poker hand" consists of 5 unordered cards from a standard deck of 52. There are $\binom{52}{5} = 2,598,9604$ possible poker hands. Below, we calculate the probability of each of the standard kinds of poker hands.

Royal Flush. This hand consists of values 10, J, Q, K, A, all of the same suit. Since the values are fixed, we only need to choose the suit, and there are $\binom{4}{1} = 4$ ways to do this.

Straight Flush. A straight flush consists of five cards with values in a row, all of the same suit. Ace may be considered as high or low, but not both. (For example, A, 2, 3, 4, 5 is a straight, but Q, K, A, 2, 3 is not a straight.) The lowest value in the straight may be A, 2, 3, 4, 5, 6, 7, 8 or 9. (Note that a straight flush beginning with 10 is a royal flush, and we don't want to count those.) So there are 9 choices for the card values, and then $\binom{4}{1} = 4$ choices for the suit, giving a total of $9 \cdot 4 = 36$.

Straight. A straight consists of five values in a row, *not* all of the same suit. The lowest value in the straight could be A, 2, 3, 4, 5, 6, 7, 8, 9 or 10, giving 10 choices for the card values. Then there are $\binom{4}{1}^5 = 4^5$ ways to choose the suits of the five cards, for a total of $10 \cdot 4^5 = 10,240$ choices. But this value also includes the straight flushes and royal flushes which we do not want to include. Subtracting the 40 straight and royal flushes, we get 10,240 - 40 = 10,200.

Flush. A flush consists of five cards, all of the same suit. There are $\binom{4}{1} = 4$ ways to choose the suit, then given that there are 13 cards of that suit, there are $\binom{13}{5}$ ways to choose the hand, giving a total of $4 \cdot \binom{13}{5} = 5$, 148 flushes. But note that this includes the straight and royal flushes, which we don't want to include. Subtracting 40, we get a grand total of 5, 148 – 40 = 5, 108.

Four of a Kind. This hand consists of four cards of one value, and a fifth card of a different value. There are $\binom{13}{1} = 13$ ways to choose the value for the quadruple. Then, among the cards

of this value, there are $\binom{4}{4} = 1$ ways to choose the quadruple. After this, there are $\binom{12}{1} = 12$ ways to choose a value for the single from the remaining values, and $\binom{4}{1} = 4$ ways to choose the single from the four cards of this value, for a grand total of

$$\binom{13}{1}\binom{4}{4}\binom{12}{1}\binom{4}{1} = 13 \cdot 1 \cdot 12 \cdot 4$$
$$= 624.$$

Full House. This hand consists of three cards of one value, and two cards of a different value. There are $\binom{13}{1}$ ways to choose a value for the triple, then $\binom{4}{3}$ ways to choose the triple from the four cards of this value. Then, there are $\binom{12}{1}$ ways to choose the value of the double from the remaining values, and $\binom{4}{2}$ ways to choose the double from the four cards of this value, for a grand total of

$$\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2} = 13 \cdot 4 \cdot 12 \cdot 6$$
$$= 3,744.$$

Three of a Kind. This hand consists of three cards of one value, and two more cards, each of different values. There are $\binom{13}{1}$ ways to choose the value for the triple, and $\binom{4}{3}$ ways to choose the triple from the four cards of this value. Then there are $\binom{12}{2}$ ways to choose two (unordered) values for the remaining singles, and $\binom{4}{1}\binom{4}{1}$ to choose the singles from their respective values, for a grand total of

$$\binom{13}{1}\binom{4}{3}\binom{12}{2}\binom{4}{1}\binom{4}{1} = 13 \cdot 4 \cdot 66 \cdot 4 \cdot 4$$
$$= 54,912.$$

Two Pairs. This hand consists of two pairs of different values, and a fifth card of another different value. There are $\binom{13}{2}$ ways to choose two (unordered) values for the two pairs, then $\binom{4}{2}\binom{4}{2}$ to choose the pairs from the cards of these values. Then there are $\binom{11}{1}$ ways to choose a remaining value for the single, and $\binom{4}{1}$ ways to choose the single from the four cards of this value, for a grand total of

$$\binom{13}{2}\binom{4}{2}\binom{4}{2}\binom{11}{1}\binom{4}{1} = 78 \cdot 6 \cdot 6 \cdot 11 \cdot 4$$
$$= 123,552.$$

One Pair. This hand consists of a pair of one value, and three additional cards, each of different value. There are $\binom{13}{1}$ ways to choose a value for the pair, then $\binom{4}{2}$ ways to choose the

pair from the four cards of this value. Then there are $\binom{12}{3}$ ways to choose three (unordered) values for the remaining three singles, and $\binom{4}{1}^3$ to choose suits for the singles, for a grand total of

$$\binom{13}{1}\binom{4}{2}\binom{12}{3}\binom{4}{1}^3 = 13 \cdot 6 \cdot 220 \cdot 4^3$$
$$= 1,098,240.$$

Putting all of this together, we obtain the following ranking of poker hands:

Poker Hand	Number of Ways to Get This	Probability of This Hand
Royal Flush	4	0.000154%
Straight Flush	36	0.00139%
Four of a Kind	624	0.0240%
Full House	3,744	0.144%
Flush	5,108	0.197%
Straight	10,200	0.392%
Three of a Kind	54,912	2.11%
Two Pairs	123,552	4.75%
One Pair	1,098,240	42.3%
Nothing	1,302,540	50.1%

Wait, how did I compute the probability of getting "Nothing"?

How would you answer the question: "What is the probability of getting Three of a Kind or better?"