9.4 OBJECTIVES

1. Multiply and divide expressions involving numeric radicals
2. Multiply and divide expressions involving algebraic radicals

In Section 9.2 we stated the first property for radicals:
$\sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \quad$ when a and b are any positive real numbers
That property has been used to simplify radical expressions up to this point. Suppose now that we want to find a product, such as $\sqrt{3} \cdot \sqrt{5}$.

We can use our first radical rule in the opposite manner.

NOTE The product of square roots is equal to the square root of the product of the radicands.
$\sqrt{a} \cdot \sqrt{b}=\sqrt{a b}$
so
$\sqrt{3} \cdot \sqrt{5}=\sqrt{3 \cdot 5}=\sqrt{15}$
We may have to simplify after multiplying, as Example 1 illustrates.

Example 1

Simplifying Radical Expressions

Multiply then simplify each expression.
(a) $\sqrt{5} \cdot \sqrt{10}=\sqrt{5 \cdot 10}=\sqrt{50}$

$$
=\sqrt{25 \cdot 2}=5 \sqrt{2}
$$

(b) $\sqrt{12} \cdot \sqrt{6}=\sqrt{12 \cdot 6}=\sqrt{72}$

$$
=\sqrt{36 \cdot 2}=\sqrt{36} \cdot \sqrt{2}=6 \sqrt{2}
$$

An alternative approach would be to simplify $\sqrt{12}$ first.

$$
\begin{aligned}
\sqrt{12} \cdot \sqrt{6}=2 \sqrt{3} \sqrt{6} & =2 \sqrt{18} \\
& =2 \sqrt{9 \cdot 2}=2 \sqrt{9} \sqrt{2} \\
& =2 \cdot 3 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

(c) $\sqrt{10 x} \cdot \sqrt{2 x}=\sqrt{20 x^{2}}=\sqrt{4 x^{2} \cdot 5}$

$$
=\sqrt{4 x^{2}} \cdot \sqrt{5}=2 x \sqrt{5}
$$

NOTE In practice, it is not necessary to show the intermediate steps.

CHECK YOURSELF 1

Simplify.

(a) $\sqrt{3} \cdot \sqrt{6}$
(b) $\sqrt{3} \cdot \sqrt{18}$
(c) $\sqrt{8 a} \cdot \sqrt{3 a}$

If coefficients are involved in a product, we can use the commutative and associative properties to change the order and grouping of the factors. This is illustrated in Example 2.

Example 2

Multiplying Radical Expressions
Multiply.

$$
\begin{aligned}
(2 \sqrt{5})(3 \sqrt{6}) & =(2 \cdot 3)(\sqrt{5} \cdot \sqrt{6}) \\
& =6 \sqrt{5 \cdot 6} \\
& =6 \sqrt{30}
\end{aligned}
$$

CHECK YOURSELF 2

Multiply ($3 \sqrt{7}$)(5 $\sqrt{3}$).

The distributive property can also be applied in multiplying radical expressions. Consider the following.

Example 3

Multiplying Radical Expressions
Multiply.
(a) $\sqrt{3}(\sqrt{2}+\sqrt{3})$
$=\sqrt{3} \cdot \sqrt{2}+\sqrt{3} \cdot \sqrt{3} \quad$ The distributive property
$=\sqrt{6}+3 \quad$ Multiply the radicals.
(b) $\sqrt{5}(2 \sqrt{6}+3 \sqrt{3})$
$=\sqrt{5} \cdot 2 \sqrt{6}+\sqrt{5} \cdot 3 \sqrt{3} \quad$ The distributive property
$=2 \cdot \sqrt{5} \cdot \sqrt{6}+3 \cdot \sqrt{5} \cdot \sqrt{3} \quad$ The commutative property
$=2 \sqrt{30}+3 \sqrt{15}$

CHECK YOURSELF 3

Multiply.

(a) $\sqrt{5}(\sqrt{6}+\sqrt{5})$
(b) $\sqrt{3}(2 \sqrt{5}+3 \sqrt{2})$

The FOIL pattern we used for multiplying binomials in Section 3.4 can also be applied in multiplying radical expressions. This is shown in Example 4.

NOTE You can use the pattern $(a+b)(a-b)=a^{2}-b^{2}$, where $a=\sqrt{7}$ and $b=2$, for the same result. $\sqrt{7}+2$ and $\sqrt{7}-2$ are called conjugates of each other. Note that their product is the rational number 3. The product of conjugates will always be rational.

Example 4

Multiplying Radical Expressions
Multiply.
(a) $(\sqrt{3}+2)(\sqrt{3}+5)$

$$
\begin{aligned}
& =\sqrt{3} \cdot \sqrt{3}+5 \sqrt{3}+2 \sqrt{3}+2 \cdot 5 \\
& =3+5 \sqrt{3}+2 \sqrt{3}+10 \quad \text { Combine like terms. } \\
& =13+7 \sqrt{3}
\end{aligned}
$$

Be Careful! This result cannot be further simplified: 13 and $7 \sqrt{3}$ are not like terms.
(b) $(\sqrt{7}+2)(\sqrt{7}-2)=\sqrt{7} \cdot \sqrt{7}-2 \sqrt{7}+2 \sqrt{7}-4$

$$
=7-4=3
$$

(c) $(\sqrt{3}+5)^{2}=(\sqrt{3}+5)(\sqrt{3}+5)$

$$
\begin{aligned}
& =\sqrt{3} \cdot \sqrt{3}+5 \sqrt{3}+5 \sqrt{3}+5 \cdot 5 \\
& =3+5 \sqrt{3}+5 \sqrt{3}+25 \\
& =28+10 \sqrt{3}
\end{aligned}
$$

CHECK YOURSELF 4

Multiply.

(a) $(\sqrt{5}+3)(\sqrt{5}-2)$
(b) $(\sqrt{3}+4)(\sqrt{3}-4)$
(c) $(\sqrt{2}-3)^{2}$

We can also use our second property for radicals in the opposite manner.

NOTE The quotient of square roots is equal to the square root of the quotient of the radicands.

NOTE The clue to recognizing when to use this approach is in noting that 48 is divisible by 3 .
$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$
One use of this property to divide radical expressions is illustrated in Example 5.

Example 5

Simplifying Radical Expressions
Simplify.
(a) $\frac{\sqrt{48}}{\sqrt{3}}=\sqrt{\frac{48}{3}}=\sqrt{16}=4$
(b) $\frac{\sqrt{200}}{\sqrt{2}}=\sqrt{\frac{200}{2}}=\sqrt{100}=10$
(c) $\frac{\sqrt{125 x^{2}}}{\sqrt{5}}=\sqrt{\frac{125 x^{2}}{5}}=\sqrt{25 x^{2}}=5 x$

There is one final quotient form that you may encounter in simplifying expressions, and it will be extremely important in our work with quadratic equations in the next chapter. This form is shown in Example 6.

CHECK YOURSELF 5
 5

Simplify.
(a) $\frac{\sqrt{75}}{\sqrt{3}}$
(b) $\frac{\sqrt{81 s^{2}}}{\sqrt{9}}$

Example 6

Simplifying Radical Expressions
Simplify the expression
$\frac{3+\sqrt{72}}{3}$

Be Careful! Students are sometimes tempted to write $\frac{\not 7+6 \sqrt{2}}{\nexists}=1+6 \sqrt{2}$
This is not correct. We must divide both terms of the numerator by the common factor.

First, we must simplify the radical in the numerator.

$$
\begin{array}{rlrl}
\frac{3+\sqrt{72}}{3} & =\frac{3+\sqrt{36 \cdot 2}}{3} & & \text { Use Property } 1 \text { to simplify } \sqrt{72} \\
& =\frac{3+\sqrt{36} \cdot \sqrt{2}}{3}=\frac{3+6 \sqrt{2}}{3} & \\
& =\frac{3(1+2 \sqrt{2})}{3}=1+2 \sqrt{2} & \begin{array}{l}
\text { Factor the numerator-then divide } \\
\text { by the common factor 3. }
\end{array}
\end{array}
$$

CHECK YOURSELF 6

Simplify $\frac{15+\sqrt{75}}{5}$.

CHECK YOURSELF ANSWERS

1. (a) $3 \sqrt{2}$; (b) $3 \sqrt{6}$;
(c) $2 a \sqrt{6}$
2. $15 \sqrt{21}$
3. (a) $\sqrt{30}+5$;
(b) $2 \sqrt{15}+3 \sqrt{6}$
4. (a) $-1+\sqrt{5}$;
(b) -13 ; (c) $11-6 \sqrt{2}$
5. (a) 5 ; (b) $3 s$
6. $3+\sqrt{3}$
\qquad

Section \qquad Date \qquad
Perform the indicated multiplication. Then simplify each radical expression.

1. $\sqrt{7} \cdot \sqrt{5}$
2. $\sqrt{3} \cdot \sqrt{7}$
3. $\sqrt{5} \cdot \sqrt{11}$
4. $\sqrt{13} \cdot \sqrt{5}$
5. $\sqrt{3} \cdot \sqrt{10 m}$
6. $\sqrt{7 a} \cdot \sqrt{13}$
7. $\sqrt{2 x} \cdot \sqrt{15}$
8. $\sqrt{17} \cdot \sqrt{2 b}$
9. $\sqrt{3} \cdot \sqrt{7} \cdot \sqrt{2}$
10. $\sqrt{5} \cdot \sqrt{7} \cdot \sqrt{3}$
11. $\sqrt{3} \cdot \sqrt{12}$
12. $\sqrt{7} \cdot \sqrt{7}$
13. $\sqrt{10} \cdot \sqrt{10}$
14. $\sqrt{5} \cdot \sqrt{15}$
15. $\sqrt{18} \cdot \sqrt{6}$
16. $\sqrt{8} \cdot \sqrt{10}$
17. $\sqrt{2 x} \cdot \sqrt{6 x}$
18. $\sqrt{3 a} \cdot \sqrt{15 a}$
19. $2 \sqrt{3} \cdot \sqrt{7}$
20. $3 \sqrt{2} \cdot \sqrt{5}$
21. $(3 \sqrt{3})(5 \sqrt{7})$
22. $(2 \sqrt{5})(3 \sqrt{11})$

ANSWERS

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

ANSWERS

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46. each radical expression.
47. $\frac{\sqrt{98}}{\sqrt{2}}$
48. $\frac{\sqrt{108}}{\sqrt{3}}$
49. $\frac{\sqrt{72 a^{2}}}{\sqrt{2}}$
50. $\frac{\sqrt{48 m^{2}}}{\sqrt{3}}$
51. $(\sqrt{x}+4)^{2}$

Perform the indicated division. Rationalize the denominator if necessary. Then simplify
47. $\frac{4+\sqrt{48}}{4}$
48. $\frac{12+\sqrt{108}}{6}$
49. $\frac{5+\sqrt{175}}{5}$
50. $\frac{18+\sqrt{567}}{9}$
51. $\frac{-8-\sqrt{512}}{4}$
52. $\frac{-9-\sqrt{108}}{3}$
53. $\frac{6+\sqrt{18}}{3}$
53. $\frac{6-\sqrt{20}}{2}$
55. $\frac{15-\sqrt{75}}{5}$
56. $\frac{8+\sqrt{48}}{4}$
57. Area of a rectangle. Find the area of the rectangle shown in the figure.

58. Area of a rectangle. Find the area of the rectangle shown in the figure.

59. Complete this statement: " $\sqrt{2} \cdot \sqrt{5}=\sqrt{10}$ because . . ."
60. Explain why $2 \sqrt{3}+5 \sqrt{3}=7 \sqrt{3}$ but $7 \sqrt{3}+3 \sqrt{5} \neq 10 \sqrt{8}$.
61. When you look out over an unobstructed landscape or seascape, the distance to the
is a good estimate of this, in which $d=$ distance to horizon in miles and $h=$ height of viewer above the ground. Work with a partner to make a chart of distances to the horizon given different elevations. Use the actual heights of tall buildings or
$d=\sqrt{\frac{3}{2}} h$

visible horizon depends on your height above the ground. The equation

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

ANSWERS

a.
b.
c.
d.

e.

f.
prominent landmarks in your area. The local library should have a list of these. Be sure to consider the view to the horizon you get when flying in a plane. What would your elevation have to be to see from one side of your city or town to the other? From one side of your state or county to the other?

Getting Ready for Section 9.5 [Section 9.1]

Evaluate the following. Round your answer to the nearest thousandth.
(a) $\sqrt{16}$
(b) $\sqrt{49}$
(c) $\sqrt{121}$
(d) $\sqrt{12}$
(e) $\sqrt{27}$
(f) $\sqrt{98}$

Answers

1. $\sqrt{35}$
2. $\sqrt{55}$
3. $\sqrt{30 m}$
4. $\sqrt{30 x}$
5. $\sqrt{42}$
6. 6
7. 10
8. $6 \sqrt{3}$
9. $2 x \sqrt{3}$
10. $2 \sqrt{21}$
11. $15 \sqrt{21}$
12. $30 \sqrt{2}$
13. $\sqrt{10}+5$
14. $2 \sqrt{15}-9$
15. $18+8 \sqrt{3}$
16. $2+2 \sqrt{5}$
17. 1
18. -15
19. $x-9$
20. $7+4 \sqrt{3}$
21. $y-10 \sqrt{y}+25$
22. 7
23. $6 a$
24. $1+\sqrt{3}$
25. $1+\sqrt{7}$
26. $-2-4 \sqrt{2}$
27. $2+\sqrt{2}$
28. 3
b. 7
29. $\sqrt{33}$
30.

a. 4
c. 11
d. 3.464
f. 9.899

