6.2

What you should learn

GOAL(1) Use some properties of parallelograms.
GOAL (2) Use properties of parallelograms in real-life situations, such as the drafting table shown in Example 6.
Why you should learn it
∇ You can use properties of parallelograms to understand how a scissors lift works in

Properties of Parallelograms

goal 1 Properties of Parallelograms

In this lesson and in the rest of the chapter you will study special quadrilaterals. A parallelogram is a quadrilateral with both pairs of opposite sides parallel.
When you mark diagrams of quadrilaterals, use matching arrowheads to indicate which sides are parallel. For example, in the diagram at the right, $\overline{P Q} \| \overline{R S}$ and $\overline{Q R} \| \overline{S P}$. The symbol $\square P Q R S$ is read "parallelogram PQRS."

THEOREMS ABOUT PARALLELOGRAMS

THEOREM 6.2

If a quadrilateral is a parallelogram, then its opposite sides are congruent.
$\overline{P Q} \cong \overline{R S}$ and $\overline{S P} \cong \overline{Q R}$

THEOREM 6.3

If a quadrilateral is a parallelogram, then its opposite angles are congruent.
$\angle P \cong \angle R$ and $\angle Q \cong \angle S$

THEOREM 6.4

If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.
$m \angle P+m \angle Q=180^{\circ}, m \angle Q+m \angle R=180^{\circ}$,
$m \angle R+m \angle S=180^{\circ}, m \angle S+m \angle P=180^{\circ}$

THEOREM 6.5

If a quadrilateral is a parallelogram, then its diagonals bisect each other.

$$
\overline{Q M} \cong \overline{S M} \text { and } \overline{P M} \cong \overline{R M}
$$

Theorem 6.2 is proved in Example 5. You are asked to prove Theorem 6.3, Theorem 6.4, and Theorem 6.5 in Exercises 38-44.

EXAMPLE 1 Using Properties of Parallelograms

$F G H J$ is a parallelogram.
Find the unknown length.
Explain your reasoning.
a. JH

b. $J K$

SOLUTION

a. $J H=F G$
Opposite sides of a \square are \cong.
$J H=5 \quad$ Substitute 5 for $F G$.
$\begin{aligned} \text { b. } J K & =G K & & \text { Diagonals of a } \square \text { bisect each other. } \\ J K & =3 & & \text { Substitute } 3 \text { for } G K .\end{aligned}$

EXA MPLE 2 Using Properties of Parallelograms

$P Q R S$ is a parallelogram.
Find the angle measure.
a. $m \angle R$
b. $m \angle Q$

SOLUTION

a. $m \angle R=m \angle P$
$m \angle R=70^{\circ} \quad$ Substitute 70° for $m \angle P$.
b. $m \angle Q+m \angle P=180^{\circ}$

$$
\begin{aligned}
m \angle Q+70^{\circ} & =180^{\circ} & \text { Substitute } 70^{\circ} \text { for } m \angle P . \\
m \angle Q & =110^{\circ} & \text { Subtract } 70^{\circ} \text { from each side. }
\end{aligned}
$$

EXAMPLE 3 Using Algebra with Parallelograms

$P Q R S$ is a parallelogram.
Find the value of x.

Solution

$$
\begin{aligned}
m \angle S+m \angle R & =180^{\circ} & & \text { Consecutive angles of a } \square \text { are supplementary. } \\
3 x+120 & =180 & & \text { Substitute } 3 x \text { for } m \angle S \text { and } 120 \text { for } m \angle \boldsymbol{R} . \\
3 x & =60 & & \text { Subtract } 120 \text { from each side. } \\
x & =20 & & \text { Divide each side by } 3 .
\end{aligned}
$$

GOAL 2 REASONING ABOUT PARALLELOGRAMS

EXAMPLE 4 Proving Facts about Parallelograms

GIVEN $>A B C D$ and $A E F G$ are parallelograms.
PROVE $>\angle 1 \cong \angle 3$
Plan Show that both angles are congruent to $\angle 2$. Then use the Transitive Property of Congruence.

SOLUTION

Method 1 Write a two-column proof.

Statements	Reasons
1. $A B C D$ is a $\square . A E F G$ is a \square.	1. Given
2. $\angle 1 \cong \angle 2, \angle 2 \cong \angle 3$	2. Opposite angles of a \square are \cong.
3. $\angle 1 \cong \angle 3$	3. Transitive Property of Congruence

Method 2 Write a paragraph proof.
$A B C D$ is a parallelogram, so $\angle 1 \cong \angle 2$ because opposite angles of a parallelogram are congruent. $A E F G$ is a parallelogram, so $\angle 2 \cong \angle 3$. By the Transitive Property of Congruence, $\angle 1 \cong \angle 3$.

EXAMPLE 5 Proving Theorem 6.2

GIVEN $\mid A B C D$ is a parallelogram.
PROVE $>\overline{A B} \cong \overline{C D}, \overline{A D} \cong \overline{C B}$

SOLUTION

Statements	Reasons		
1. $A B C D$ is a \square.	1. Given 2. Draw $\overline{B D}$.		
2. Through any two points there exists exactly one line.			
3. $\overline{A B}\\|\overline{C D}, \overline{A D}\\| \overline{C B}$	3. Definition of parallelogram		
4. $\angle A B D \cong \angle C D B$,	4. Alternate Interior Angles Theorem		
$\angle A D B \cong \angle C B D$	5. Reflexive Property of Congruence		
5. $\overline{D B} \cong \overline{D B}$	6. ASA Congruence Postulate		
6. $\triangle A D B \cong \triangle C B D$	7. Corresponding parts of \cong are \cong.		

FURNITURE DESIGN
Furniture designers use geometry, trigonometry, and other skills to create designs for furniture.

CAREER LINK
www.mcdougallittell.com

EXAMPLE 6 Using Parallelograms in Real Life

Furniture Design A drafting table is made so that the legs can be joined in different ways to change the slope of the drawing surface. In the arrangement below, the legs $\overline{A C}$ and $\overline{B D}$ do not bisect each other. Is $A B C D$ a parallelogram?

SOLUTION

No. If $A B C D$ were a parallelogram, then by Theorem $6.5 \overline{A C}$ would bisect $\overline{B D}$ and $\overline{B D}$ would bisect $\overline{A C}$.

Guided Practice

Vocabulary Check
Concept Check

1. Write a definition of parallelogram.

Decide whether the figure is a parallelogram. If it is not, explain why not.
2.

3.

Identifying Congruent Parts Use the diagram of parallelogram JKLM at the right. Complete the statement, and give a reason for your answer.
4. $\overline{J K} \cong$?
5. $\overline{M N} \cong$?
6. $\angle M L K \cong$ \qquad 7. $\angle J K L \cong$?
8. $\overline{J N} \cong$?
9. $\overline{K L} \cong$?
10. $\angle M N L \cong$ \qquad 11. $\angle M K L \cong$ \qquad

Find the measure in parallelogram LMNQ. Explain your reasoning.
12. $L M$
13. $L P$
14. $L Q$
15. $Q P$
16. $m \angle L M N$
17. $m \angle N Q L$
18. $m \angle M N Q$
19. $m \angle L M Q$

Practice and Applications

STUDENT HELP

\rightarrow Extra Practice to help you master skills is on p. 813.
\rightarrow HOMEWORK HELP
Example 1: Exs. 20-22
Example 2: Exs. 23-25
Example 3: Exs. 26-37
Example 4: Exs. 55-58
Example 5: Exs. 38-44
Example 6: Exs. 45-54

FINDING MEASURES Find the measure in parallelogram $A B C D$. Explain your reasoning.
20. $D E$
21. $B A$
22. $B C$
23. $m \angle C D A$
24. $m \angle A B C$
25. $m \angle B C D$

(4) USING Algebra Find the value of each variable in the parallelogram.
26.

27.

28.

29.

30.

31.

(2y) Using Algebra Find the value of each variable in the parallelogram.
32.

33.

34.

35.

36.

37.

38. (Proving Theorem 6.3 Copy and complete the proof of Theorem 6.3: If a quadrilateral is a parallelogram, then its opposite angles are congruent.

GIVEN $>A B C D$ is a \square.
PROVE $>\angle A \cong \angle C$,
$\angle B \cong \angle D$

Paragraph Proof Opposite sides of a parallelogram are congruent, so \ldots a._ and _b._. By the Reflexive Property of Congruence, __ c. $\triangle A B D \cong \triangle C D B$ because of the _d._Congruence Postulate. Because e. parts of congruent triangles are congruent, $\angle A \cong \angle C$.

To prove that $\angle B \cong \angle D$, draw \qquad f. and use the same reasoning.

StAIR BALUSTERS In Exercises 47-50, use the following information.
In the diagram at the right, the slope of the handrail is equal to the slope of the stairs. The balusters (vertical posts) support the handrail.
47. Which angle in the red parallelogram is congruent to $\angle 1$?
48. Which angles in the blue parallelogram are supplementary to $\angle 6$?
49. Which postulate can be used to prove that $\angle 1 \cong \angle 5$?
50. Writing Is the red parallelogram congruent to
 the blue parallelogram? Explain your reasoning.

Scissors Lift Photographers can use scissors lifts for overhead shots, as shown at the left. The crossing beams of the lift form parallelograms that move together to raise and lower the platform. In Exercises 51-54, use the diagram of parallelogram $A B D C$ at the right.
51. What is $m \angle B$ when $m \angle A=120^{\circ}$?
52. Suppose you decrease $m \angle A$. What happens to $m \angle B$?
53. Suppose you decrease $m \angle A$. What happens to $A D$?
54. Suppose you decrease $m \angle A$. What happens to the overall height of the scissors lift?

(D) Two-Column Proof Write a two-column proof.
55. GIVEN $>A B C D$ and $C E F D$ are $\square \mathrm{s}$.

PROVE $\mid \overline{A B} \cong \overline{F E}$

57. GIVEN $>W X Y Z$ is a \square.

PROVE $>\triangle W M Z \cong \triangle Y M X$

56. GIVEN $>P Q R S$ and $T U V S$ are $\square \mathrm{s}$.

PROVE $>\angle 1 \cong \angle 3$

58. GIVEN $>A B C D, E B G F, H J K D$ are $\square \mathrm{s}$.

PROVE $>\angle 2 \cong \angle 3$

59. Writing In the diagram, $A B C G, C D E G$, and $A G E F$ are parallelograms. Copy the diagram and add as many other angle measures as you can. Then describe how you know the angle measures you added are correct.

60. Multiple Choice In $\square K L M N$, what is the value of s ?
(A) 5
(B) 20
(C) 40
(D) 52
(E) 70

61. Multiple Choice In $\square A B C D$, point E is the intersection of the diagonals. Which of the following is not necessarily true?
(A) $A B=C D$
(B) $A C=B D$
(C) $A E=C E$
(D) $A D=B C$
(E) $D E=B E$
(3y) Using Algebra Suppose points $A(1,2), B(3,6)$, and $C(6,4)$ are three vertices of a parallelogram.
62. Give the coordinates of a point that could be the fourth vertex. Sketch the parallelogram in a coordinate plane.
63. Explain how to check to make sure the figure you drew in Exercise 62 is a parallelogram.
64. How many different parallelograms can be
 formed using A, B, and C as vertices? Sketch each parallelogram and label the coordinates of the fourth vertex.
65. $A(2,1), B(6,9)$
66. $A(-4,2), B(2,-1)$
67. $A(-8,-4), B(-1,-3)$

3 Using Algebra Find the slope of $\overline{\boldsymbol{A B}}$. (Review 3.6 for 6.3)
68. $A(2,1), B(6,9)$
69. $A(-4,2), B(2,-1)$
70. $A(-8,-4), B(-1,-3)$
71. Parking Cars In a parking lot, two guidelines are painted so that they are both perpendicular to the line along the curb. Are the guidelines parallel? Explain why or why not. (Review 3.5)

Name the shortest and longest sides of the triangle. Explain. (Review 5.5)
72.

73. D

74.

