Line of Best Fit
 PROJECT

Median - Median Line

1. Organize the data with the x-coordinate from least to greatest.
2. Separate the data into three (3) groups of equal size. If not divisible by 3 , groups 1 and 3 must be the same size.
3. Find the medians of the x-coordinates and the y-coordinates.
4. Calculate the slope using the medians from group 1 and the medians from group 3. This is the slope of the median-median line.
5. Find the sum of the three medians of the y-values.
6. Find the sum of the three medians of the x-values.
7. Calculate the y-intercept of the median-median line using the formula:

$$
y \text {-intercept }=\frac{\text { Sum of medians of } y \text {-slope } \cdot(\text { sum of medians of } x)}{3}
$$

8. Write the equation of the median-median line in slope-intercept form.

Example: Given the data

1	2	7	5	2	4	8	6	7
48	42	93	69	50	45	96	44	82

STEP 1: Sort by x
$(1,48),(2,42),(2,50),(4,45),(5,69),(6,44),(7,82),(7,93),(8,96)$
STEP 2: Separate into groups
Group 1: $(1,48),(2,42),(2,50) \quad x: 1,2,2 y: 42,48,50$
Group 2: $(4,45),(5,69),(6,44) \quad x: 4,5,6 \quad y: 44,45,69$
Group 3: $(7,82),(7,93),(8,96) \quad x: 7,7,8 \quad y: 82,93,96$
STEP 3: Find the medians
Group 1 medians:x: $2 \quad y: 48$
Group 2 medians: x : $5 \quad y: 45$
Group 3 medians: x : 7 y: 93
STEP 4: Calculate group 1-group 3 slope
$\frac{93-48}{7-2}=\frac{45}{5}=9$
STEP 5: Sum of y-medians
$48+45+93=186$
STEP 6: Sum of x-medians
$2+5+7=14$
STEP 7: y-intercept value
$\frac{186-9(14)}{3}=20$
STEP 8: Write the line
$y=9 x+20$

Correlation Coefficient

$$
r=\frac{\sum X Y-\frac{\left(\sum X\right)\left(\sum Y\right)}{n}}{\sqrt{\left(\sum X^{2}-\frac{\left(\sum X\right)^{2}}{n}\right)\left(\sum Y^{2}-\frac{\left(\sum Y\right)^{2}}{n}\right)}}
$$

Using the example above, we compute the following

$$
\begin{aligned}
& \Sigma X Y=(1)(48)+(2)(42)+(7)(93)+(5)(69)+(2)(50)+(4)(45)+(8)(96)+(6)(44)+(7)(82)=3014 \\
& \Sigma X=1+2+7+5+2+4+8+6+7=42 \\
& \Sigma \mathrm{Y}=48+42+93+69+50+45+96+44+82=569 \\
& \Sigma \mathrm{X}^{2}=1^{2}+2^{2}+7^{2}+5^{2}+2^{2}+4^{2}+8^{2}+6^{2}+7^{2}=248 \\
& \Sigma \mathrm{Y}^{2}=48^{2}+42^{2}+93^{2}+69^{2}+50^{2}+45^{2}+96^{2}+44^{2}+82^{2}=39879 \\
& \mathrm{n}=9
\end{aligned}
$$

$$
\mathrm{r}=\frac{3014-\frac{(42)(569)}{9}}{\sqrt{\left(248-\frac{(42)^{2}}{9}\right)\left(39879-\frac{(569)^{2}}{9}\right)}}=0.7958806296
$$

Line of Best Fit
 PROJECT

Project: Scatterplot and Correlation Coefficient Data below are the heights of mothers (X) and their daughters (Y) in inches.

\mathbf{X}	63	67	64	60	65	67	59	60	58	72	63
\mathbf{Y}	59	65	65	61	65	67	61	63	60	71	62

Source: U.S. Department of Health and Human Services, National Center for Health Statistics

1. Use a computer program (Google sheets, Excel, etc.) to generate a scatter plot of the data.
2. Describe the relationship between the data.
3. Calculate the correlation coefficient by hand and compare it to the correlation coefficient generated by a calculator or computer.
4. Look at the data and create a trend line by inspection.
5. Use the median-median method to create a trend line for the data.
6. Use a calculator to generate the trend line for the data.
7. Compare the three regression lines generated in steps $4-6$.
8. Can we conclude that taller mothers will have taller daughters?
