Line of Best Fit

PROJECT

Median – Median Line

- 1. Organize the data with the *x*-coordinate from least to greatest.
- 2. Separate the data into three (3) groups of equal size. If not divisible by 3, groups 1 and 3 must be the same size.
- 3. Find the medians of the *x*-coordinates and the *y*-coordinates.
- 4. Calculate the slope using the medians from group 1 and the medians from group 3. This is the slope of the median-median line.
- 5. Find the sum of the three medians of the *y*-values.
- 6. Find the sum of the three medians of the *x*-values.
- 7. Calculate the *y*-intercept of the median-median line using the formula:

y-intercept = $\frac{Sum of medians of y-slope (sum of medians of x)}{2}$

8. Write the equation of the median-median line in slope-intercept form.

Example: Given the data

		1	2	7	5	2	4	8	6	7	
		48	42	93	69	50	45	96	44	82	
<u>STEP 1</u> :	Sort by x										
	(1, 48), (2, 42), (2, 50), (4,	45),	(5, 6)	9), (6	, 44),	(7,8	2), (7	, 93),	(8, 9	6)	
<u>STEP 2</u> : Separate into groups											
	Group 1: (1, 48), (2, 42),	(2, 50	(2, 50) x: 1, 2, 2y: 42, 4						8, 50		
	Group 2: (4, 45), (5, 69),	(6, 44)				<i>x</i> : 4, 5, 6			y: 44, 45, 69		
	Group 3: (7, 82), (7, 93),	(8, 96	5)		<i>x</i> :	7,7,	8		y: 82	2, 93, 96	
<u>STEP 3</u> :	Find the medians										
	Group 1 medians: x: 2	y: 48	3								
	Group 2 medians: x: 5	y: 45	5								
	Group 3 medians: <i>x</i> : 7	y: 93	3								
<u>STEP 4</u> :	Calculate group 1-group 3	3 slop	ре								
	$\frac{93-48}{9} = \frac{45}{9} = 9$										
STED 5.	7-2 5 Sum of y modians										
<u>5111 J</u> .	$A8 \pm A5 \pm 93 - 186$										
STEP 6.	Sum of $r_{-madians}$										
<u>51L1 0</u> .	$2 \pm 5 \pm 7 - 14$										
STEP 7.	2 + 5 + 7 = 17										
<u>51L1 /</u> .	186–9(14)										
	$\frac{1}{3} = 20$										
<u>STEP 8</u> :	Write the line										
	y = 0x + 20										

Correlation Coefficient

$$r = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{n}}{\sqrt{\left(\sum X^2 - \frac{(\sum X)^2}{n}\right)\left(\sum Y^2 - \frac{(\sum Y)^2}{n}\right)}}$$

Using the example above, we compute the following $\Sigma XY = (1)(48) + (2)(42) + (7)(93) + (5)(69) + (2)(50) + (4)(45) + (8)(96) + (6)(44) + (7)(82) = 3014$ $\Sigma X = 1 + 2 + 7 + 5 + 2 + 4 + 8 + 6 + 7 = 42$ $\Sigma Y = 48 + 42 + 93 + 69 + 50 + 45 + 96 + 44 + 82 = 569$ $\Sigma X^{2} = 1^{2} + 2^{2} + 7^{2} + 5^{2} + 2^{2} + 4^{2} + 8^{2} + 6^{2} + 7^{2} = 248$ $\Sigma Y^{2} = 48^{2} + 42^{2} + 93^{2} + 69^{2} + 50^{2} + 45^{2} + 96^{2} + 44^{2} + 82^{2} = 39879$ n = 9 $r = \frac{3014 - \frac{(42)(569)}{9}}{\sqrt{\left(248 - \frac{(42)^{2}}{9}\right)\left(39879 - \frac{(569)^{2}}{9}\right)}} = 0.7958806296$

Line of Best Fit

PROJECT

<u>Project</u>: Scatterplot and Correlation Coefficient Data below are the heights of mothers (X) and their daughters (Y) in inches.

X	63	67	64	60	65	67	59	60	58	72	63
Y	59	65	65	61	65	67	61	63	60	71	62
0	11.0			r 1.1	1 77	<i>с</i> .	37	10		1 0	•

Source: U.S. Department of Health and Human Services, National Center for Health Statistics

- 1. Use a computer program (Google sheets, Excel, etc.) to generate a scatter plot of the data.
- 2. Describe the relationship between the data.
- 3. Calculate the correlation coefficient by hand and compare it to the correlation coefficient generated by a calculator or computer.
- 4. Look at the data and create a trend line by inspection.
- 5. Use the median-median method to create a trend line for the data.
- 6. Use a calculator to generate the trend line for the data.
- 7. Compare the three regression lines generated in steps 4 6.
- 8. Can we conclude that taller mothers will have taller daughters?