

Distance Preserving

A function $f: R^{2}>R^{2}$ is a distance preserving function if for any points A and B, the distance between A and B is the same as the distance between their images $f(A)$ and $f(B)$, ie. $|A B|=|f(A) f(B)|$

- (check with the distance formula)

A function with all three properties:

- 1-1
- Onto
- Distance Preserving.

Other names are rigid motions or Euclidean motions.

Three Point Theorem

In the Euclidean plan, the images of three noncollinear points completely determine an isometry. In other words, if we know the outputs for three noncollinear points, A, B, C, we can figure out what the isometry does to any point X.

[^0]

[^0]: Composition of isometries
 $\mathrm{g} \cdot \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x})) \quad x \rightarrow f(x) \rightarrow g(f(x))$

 - Of course it is necessary for the output of f to be a legitimate input for g, so that $f(x)$ is in the domain of g . Otherwise the composition is undefined.
 - For composition of isometries in the plane, any output is a point on the plane and can serve as the input of the next function.

