\qquad Date: \qquad Period: \qquad

Inverse Functions Worksheet

Find a table of values for each function and its inverse.

1. a. $f(x)=3 x+1$
b. $f(x)=(2-x)^{2}$

Function	
\mathbf{x}	$\mathbf{f (x)}$

Inverse	
\mathbf{x}	$\mathbf{f}^{\mathbf{- 1}} \mathbf{(x)}$

Function	
\mathbf{x}	$\mathbf{f}(\mathbf{x})$

Inverse	
\mathbf{x}	$\mathbf{f}^{-1} \mathbf{(x)}$

2. Graph each function, its inverse, and their line of symmetry. Label the function and its inverse on each graph.
a. $\quad f(x)=\frac{1}{2} x+1$

b. $f(x)=(x-2)^{2}+3$

3. Find the domain and range of the each function and the domain and range of its inverse in problems 2 (a-b) above.
a. $f(x)=\frac{1}{2} x+1$
$f(x)$ Domain: \qquad Range: \qquad
b. $f(x)=(x-2)^{2}+3$
$f(x)$ Domain: \qquad Range: \qquad
$f^{-1}(x)$ Domain: \qquad Range: \qquad $f^{-1}(x)$ Domain: \qquad Range: \qquad
4. For each function in problems 2 and 3 (a-b) above, identify whether its inverse is or is not a function. Explain your answer in complete sentences:
a. Is the inverse of $f(x)=\frac{1}{2} x+1$ a function? Explain.
b. Is the inverse of $f(x)=(x-2)^{2}+3$ a function? Explain.
5. Let's apply our knowledge of functions and their inverses to a real world problem:

To make a long-distance call, your phone company charges $\$ 1.50$ to make the connection, and an additional $\$ 0.10$ for every minute that you are on the line once connected.
a. Write an equation for the price of a long-distance call, p, in terms of the length of the call in minutes, m :
b. When you get the phone bill, you see that your sister made a long-distance call that cost $\$ 2.75$. How long was she on the phone?
c. Think about how you solved part (b). Write an equation to determine m in terms of p. (That is, how do you calculate the length of a call based on its price?)
6. Find the inverse of each function below using the Flip and Find method.
a. $f(x)=3 x+4$
b. $f(x)=(2 x-3)^{2}-1$
c. $f(x)=\frac{x+5}{-5}$
d. $f(x)=\sqrt{(x-5)}$

