EXPONENTIAL GROWTH AND DECAY WORD PROBLEMS NAME: HOUR:

- 1. From 1990 to 1997, the number of cell phone subscribers S (in thousands) in the US can be modeled by, $S = 5535.33(1.413)^t$ where *t* is number of years since 1990
 - a. Identify the growth factor and annual percent increase
 - b. Sketch a graph of the model
 - c. In what year was the number of cell phone subscribers about 31 million?
 - d. According to the model, in what year will the number of cell phone subscribers exceed 90 million?
 - e. Estimate the number of subscribers in 2010.
 - f. Do you think this model can be used to predict future number of cell phone subscribers? Explain.

- 2. From 1991 to 1995, the number of computers C per 100 people worldwide can be modeled by $C = 25.2(1.15)^t$ where *t* is the number of years since 1991
 - a. Identify the initial amount, the growth factor and the annual percent increase
 - b. Sketch a graph of the model
 - c. Estimate the number of computers in 2000
- 3. Ten grams of Carbon 14 is stored in a container. The amount C (in grams) of Carbon 14 present after t years can be modeled by $C = 10(0.99987)^t$. How much is present after 1000 years?
- 4. You deposit \$2000 in an account that earns 5% annual interest. Find the balance after 1 year if the interest is compounded with the given frequency.A. annuallyB. quarterlyC. monthly

- 5. A customer purchases a television for \$800 using a credit card. The interest is charged on an unpaid balance at a rate of 18% per year compounded monthly. If the customer makes no payment for one year, how much is owed at the end of the year?
- 6. A diamond ring was purchased twenty years ago for \$500. The value of the ring increased by 8% each year. What is the value of the ring today?
- 7. In 1990 the tuition at a private college was \$15000. During the next 9 years, tuition increased by about 7.2% each year.
 - a. Write a model giving the cost C of tuition at the college t years after 1990
 - b. Sketch a graph of the model
 - c. Estimate the year the tuition is \$20,000
 - d. Estimate the tuition in 2010

- 8. You deposit \$1000 in an account that earns 2.5% annual interest. Find the balance after 3 years if the interest compounds with the given frequency.
 a. monthly
 b. daily
- 9. A house was purchased for \$90,000 in 1995. If the value of the home increases 5% per year, what is it worth in the year 2020?

- 10. From 1990 to 1998, the value of the dollar has been shrinking. The value can be modeled by $V = 1.24(0.973)^t$ where *t* is the number of years since 1990
 - a. How much was a dollar worth in 1993
 - b. Sketch a graph of the model
 - c. Estimate the year in which the dollar was worth \$1.07

- 11. A tool & die business purchased a piece of equipment of \$250,000. The value of the equipment depreciates at a rate of 12% each year.
 - a. Write an exponential decay model for the value of equipment.
 - b. What is the value of equipment after 5 years?
 - c. Graph the model.
 - d. Estimate when the equipment will have a value of \$70,000

- 12. The number of newly reported cases of tuberculosis T (in thousands) in the US from 1991 to 1996 can be approximated by the equation, $T = 28.5(0.9567)^t$ where *t* represents the number of years since 1991
 - a. Identify the initial amount, decay factor and annual percent decrease
 - b. Sketch graph of model
 - c. In what year was the number of newly reported cases in US approximately 25,000
 - d. When will the number of newly reported cases be about 16,000
 - e. Estimate the number of newly reported cases in 2005

Answers WS #2

1A)1.413 1B)See Graphs ** 1C)In approx. 5yrs so 1995;Values are given in thousands 31 million= 31,000 thousand .Find approx. x value that gives y-value 0f 31,000 ** 1D) In approx. 8-9 yrs but closer to 8 so in 1998; 90 million = 90,000thousand. Find approx. x value that gives y-value 0f 90,000. 1E) 2010 gives t= 20.

 $S = 5535.33(1.413)^{20} = 5.57 E6 = 5,570,000,000 subscribers.$

1F)No eventually the market will become saturated.

2A) Int. Amt. 25.2, growth factor 1.15, % inc. 15% 2B) See Graphs 2C) when t=9 about 88.6 computers per 100 people.

3) when t = 1,000 years C = 8.78 grams.

4A)
$$A = 2000 \left(1 + \frac{.05}{1}\right)^{1} = \$2,100$$
 4B) $A = 2000 \left(1 + \frac{.05}{4}\right)^{1(4)} = \$2,101.89$
4C) $A = 2000 \left(1 + \frac{.05}{12}\right)^{1(12)} = \$2,102$ 5) $A = 800 \left(1 + \frac{0.18}{12}\right)^{1(12)} = \956.49

6) $V = 500(1.08)^{20} = $2,330.48$

Growth factor 1.08; % increase 8%

7A) $C = 1500(1.072)^{t}$ 7B) See Graphs yrs so 1994

* *7C)Est. from graph when C =\$20,000; 4

7D) 20 yrs =t; \$ 60, 254.15

8 A)
$$A = 1000 \left(1 + \frac{1.05}{12}\right)^{36} = 1,077.80$$
 1B) $A = 1000 \left(1 + \frac{1.05}{365}\right)^{36} = \$1,077.88$

9) $C = 90,000(1.05)^{25} = $304,771.94$

10A) $1.24(0.973)^3 = \$1.14$ 10B) See graphs \$1.07 t=5 so in 1995

** 10C) Est from graph when V=

11B) $V = 250,000(0.88)^5 = \$131,932.98$ 11C) See Graphs 11A) $V = 250,000(0.88)^{t}$ **11D)Est. from graph 10 years latter

12A) 28.5 thousand, 0.9567, 4.33% 12B)See graphs 12C) 2.8 yrs. Latter-1993 12D) 12 yrs latter—2003 12E) 15.34 thousand

12A) 28.5, 0.9567, 4.33% 12B) See Graphs **12C) plug in 25 for T(b/c values are entered in thousands.) Find approx. x value that gives y-value of 25. Between 2 & 3 yrs. approx 2.9 yrs. closer to 1994 **12D) plug in 16 for T (b/c values are entered in thousands.) Find approx. x value that gives y-value of 16. t approx. 12-13 yrs from 1991 so closer to 2004. 12E) t=14; 15.336 thousand= 15, 336

** C & D we can only estimate using the graph until studying logs. Then, we will be able to determine algebraically