Exponential and Logarithmic Functions \& their Graphs

Exponential Functions and Graphs

Definition of an Exponential Function:

The exponential function with base is defined by For all real numbers , the function defined by
where , and is any real number. is called the natural exponential function.
Notice that the base of the exponential function is required to be positive and cannot be equal to 1 .

Properties of an exponential function:

For all positive real numbers , the exponential function defined by has the following properties:

1. has the set of real numbers as its domain.
2. has the set of positive real numbers as its range.
3. has a graph with -intercept of
4. has a graph asymptotic to the -axis.
5. is a one-to-one function.
6. is an increasing function if . See Figure A.
7. is a decreasing function if
. See Figure B.

Figure B

Logarithmic Functions and Graphs

Definition of Logarithmic Function:

The logarithmic function with base is defined by
where is a positive constant, , and is any positive real number.
Note: Logarithmic functions are inverses of the corresponding exponential functions.

Properties of a logarithmic function:

For all positive real numbers , the function defined by

1. has the set of positive real numbers as its domain.
2. has the set of real numbers as its range.
3. has a graph with an -intercept of
4. has a graph asymptotic to the -axis.

Figure C

has the following properties:
5. is a one-to-one function.
6. is an increasing function if . See Figure C.
7. is a decreasing function if

Figure D

Practice Problems

Sketch graphs for each of the following exponential and logarithmic functions and label the intercepts:

1. $f(x)=4^{x}$
2. $f(x)=1+e^{-x}$
3. $f(x)=\ln (x-1)$
4. $f(x)=-\log x$
5. $f(x)=\log _{3} x$
6. $f(x)=-\log _{3} x$
7. $f(x)=-2+\log _{3} x$
8.

2.

3.

8. $f(x)=2+\log _{3} x$
9. $y=\log _{2}(x-4)$
10. $y=\log _{4}(x+1)$
11. $y=\ln (x-3)$
12. $y=-\ln (x+2)$
13. $y=5-\ln x$
14. $y=3+\ln x$

Practice Problems Answers

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

