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7.3 Graphing Rational Functions

We’ve seen that the denominator of a rational function is never allowed to equal zero;
division by zero is not defined. So, with rational functions, there are special values
of the independent variable that are of particular importance. Now, it comes as no
surprise that near values that make the denominator zero, rational functions exhibit
special behavior, but here, we will also see that values that make the numerator zero
sometimes create additional special behavior in rational functions.

We begin our discussion by focusing on the domain of a rational function.
The Domain of a Rational Function

When presented with a rational function of the form

f(x) ao + a1z + agx? + - + a,a"
xTr) =
bo + b1z + bax? + -+ - + ba™’

(1)

the first thing we must do is identify the domain. Equivalently, we must identify the
restrictions, values of the independent variable (usually ) that are not in the domain.
To facilitate the search for restrictions, we should factor the denominator of the rational
function (it won’t hurt to factor the numerator at this time as well, as we will soon
see). Once the domain is established and the restrictions are identified, here are the
pertinent facts.

Behavior of a Rational Function at Its Restrictions. A rational function
can only exhibit one of two behaviors at a restriction (a value of the independent
variable that is not in the domain of the rational function).

1. The graph of the rational function will have a vertical asymptote at the re-
stricted value.
2. The graph will exhibit a “hole” at the restricted value.

In the next two examples, we will examine each of these behaviors. In this first
example, we see a restriction that leads to a vertical asymptote.

» Example 2. Sketch the graph of

1
J(@) = r+2
The first step is to identify the domain. Note that © = —2 makes the denominator
of f(x) =1/(z+2) equal to zero. Division by zero is undefined. Hence, x = —2 is not
in the domain of f; that is, x = —2 is a restriction. Equivalently, the domain of f is
{z: x# -2}

Now that we’ve identified the restriction, we can use the theory of Section 7.1 to
shift the graph of y = 1/x two units to the left to create the graph of f(x) =1/(z+2),
as shown in Figure 1.

1 Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/
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Figure 1. The function f(z) =
1/(x + 2) has a restriction at x = —2.
The graph of f has a vertical asymptote
with equation z = —2.

The function f(z) = 1/(z + 2) has a restriction at + = —2 and the graph of f
exhibits a vertical asymptote having equation x = —2.

_<>_

It is important to note that although the restricted value x = —2 makes the de-
nominator of f(x) = 1/(z + 2) equal to zero, it does not make the numerator equal to
zero. We’ll soon have more to say about this observation.

Let’s look at an example of a rational function that exhibits a “hole” at one of its

restricted values.

» Example 3. Sketch the graph of

We highlight the first step.

Factor Numerators and Denominators. When working with rational func-
tions, the first thing you should always do is factor both numerator and denomi-
nator of the rational function.

Following this advice, we factor both numerator and denominator of f(x) = (z —
2)/(a* — 4).
T —2

@)= et

It is easier to spot the restrictions when the denominator of a rational function is
in factored form. Clearly, z = —2 and =z = 2 will both make the denominator of
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SECTION 7.3 GRAPHING RATIONAL FUNCTIONS 641

f(z) = (x—2)/((z —2)(x+2)) equal to zero. Hence, x = —2 and = = 2 are restrictions
of the rational function f.

Now that the restrictions of the rational function f are established, we proceed to
the second step.

Reduce to Lowest Terms. After you establish the restrictions of the rational
function, the second thing you should do is reduce the rational function to lowest
terms.

Following this advice, we cancel common factors and reduce the rational function
f(z) =(x—2)/((z —2)(x + 2)) to lowest terms, obtaining a new function,

g(z) = :

r+2
The functions f(z) = (z — 2)/((x — 2)(x + 2)) and g(x) = 1/(x + 2) are not identical
functions. They have different domains. The domain of f is Dy = {x : © # —2,2},
but the domain of g is D, = {z :  # —2}. Hence, the only difference between the two
functions occurs at © = 2. The number 2 is in the domain of g, but not in the domain
of f.

We know what the graph of the function g(z) = 1/(z + 2) looks like. We drew this
graph in Example 2 and we picture it anew in Figure 2.
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Figure 2. The graph of g(z) =
1/(z + 2) exhibits a vertical asymptote
at its restriction x = —2.

The difficulty we now face is the fact that we’ve been asked to draw the graph of
f, not the graph of g. However, we know that the functions f and g agree at all values
of x except x = 2. If we remove this value from the graph of g, then we will have the
graph of f.
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So, what point should we remove from the graph of g7 We should remove the point
that has an z-value equal to 2. Therefore, we evaluate the function g(z) = 1/(x + 2)
at z = 2 and find
1 1

)
92 =553

Because g(2) = 1/4, we remove the point (2,1/4) from the graph of ¢ to produce the
graph of f. The result is shown in Figure 3.
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Figure 3. The graph of f(x) = (z —
2)/((x — 2)(z + 2)) exhibits a vertical
asymptote at its restriction x = —2 and
a hole at its second restriction x = 2.

_<>_

We pause to make an important observation. In Example 3, we started with the
function

r—2
) = ——,
/(@) (x —2)(x+2)
which had restrictions at x = 2 and z = —2. After reducing, the function
1
€Tr) =
9(x) T+ 2
no longer had a restriction at © = 2. The function g had a single restriction at x = —2.

The result, as seen in Figure 3, was a vertical asymptote at the remaining restriction,
and a hole at the restriction that “went away” due to cancellation. This leads us to the
following procedure.
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SECTION 7.3 GRAPHING RATIONAL FUNCTIONS 643

Asymptote or Hole? To determine whether the graph of a rational function has
a vertical asymptote or a hole at a restriction, proceed as follows:

1. Factor numerator and denominator of the original rational function f. Identify
the restrictions of f.

2. Reduce the rational function to lowest terms, naming the new function g.
Identify the restrictions of the function g.

3. Those restrictions of f that remain restrictions of the function g will introduce
vertical asymptotes into the graph of f.

4. Those restrictions of f that are no longer restrictions of the function g will
introduce “holes” into the graph of f. To determine the coordinates of the
holes, substitute each restriction of f that is not a restriction of g into the
function g to determine the y-value of the hole.

We now turn our attention to the zeros of a rational function.
The Zeros of a Rational Function

We’ve seen that division by zero is undefined. That is, if we have a fraction N/D, then
D (the denominator) must not equal zero. Thus, 5/0, —15/0, and 0/0 are all undefined.
On the other hand, in the fraction N/D, if N = 0 and D # 0, then the fraction is equal
to zero. For example, 0/5, 0/(—15), and 0/7 are all equal to zero.

Therefore, when working with an arbitrary rational function, such as

ag + a1x + asx® + - + apa”
f(z) = .

— 4
by + b1z + box?2 + - - + ba™’ (4)

whatever value of x that will make the numerator zero without simultaneously making
the denominator equal to zero will be a zero of the rational function f.

This discussion leads to the following procedure for identifying the zeros of a rational
function.

Finding Zeros of Rational Functions. To determine the zeros of a rational
function, proceed as follows.

1. Factor both numerator and denominator of the rational function f.

2. Identify the restrictions of the rational function f.

3. Identify the values of the independent variable (usually z) that make the nu-
merator equal to zero.

4. The zeros of the rational function f will be those values of x that make the
numerator zero but are not restrictions of the rational function f.

Let’s look at an example.

» Example 5. Find the zeros of the rational function defined by
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2?4 3r+2
Cx2—22 -3

f(z)

Factor numerator and denominator of the rational function f.

(x+1)(z+2)

T e ey

The values z = —1 and = = 3 make the denominator equal to zero and are restrictions.

Next, note that * = —1 and * = —2 both make the numerator equal to zero.
However, x = —1 is also a restriction of the rational function f, so it will not be a zero
of f. On the other hand, the value x = —2 is not a restriction and will be a zero of f.

Although we’ve correctly identified the zeros of f, it’s instructive to check the values
of x that make the numerator of f equal to zero. If we substitute x = —1 into original
function defined by equation (6), we find that

C(-D243(-1)+2 0
f=0= (-1)2-2(-1)-3 0

is undefined. Hence, x = —1 is not a zero of the rational function f. The difficulty in
this case is that x = —1 also makes the denominator equal to zero.

On the other hand, when we substitute = —2 in the function defined by equation (6),

C(-2243(-2)+2 0
LAl 5 Ty

In this case, x = —2 makes the numerator equal to zero without making the denomi-
nator equal to zero. Hence, x = —2 is a zero of the rational function f.

_<>_

It’s important to note that you must work with the original rational function, and
not its reduced form, when identifying the zeros of the rational function.

» Example 7. Identify the zeros of the rational function

2 —6x+9
o)==
Factor both numerator and denominator.
x — 3)?
fla)= —E=3)°
(r+3)(x—3)
Note that © = —3 and x = 3 are restrictions. Further, the only value of x that will

make the numerator equal to zero is x = 3. However, this is also a restriction. Hence,
the function f has no zeros.

The point to make here is what would happen if you work with the reduced form
of the rational function in attempting to find its zeros. Cancelling like factors leads to
a new function,
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SECTION 7.3 GRAPHING RATIONAL FUNCTIONS 645

z—3
x) = .
9(x) x+3
Note that g has only one restriction, x = —3. Further, x = 3 makes the numerator of

g equal to zero and is not a restriction. Hence, x = 3 is a zero of the function g, but
it is not a zero of the function f.

This example demonstrates that we must identify the zeros of the rational function
before we cancel common factors.

_0_
Drawing the Graph of a Rational Function

In this section we will use the zeros and asymptotes of the rational function to help
draw the graph of a rational function. We will also investigate the end-behavior of
rational functions. Let’s begin with an example.

» Example 8. Sketch the graph of the rational function

x+2

T) = . 9
fla) =21 )
First, note that both numerator and denominator are already factored. The func-
tion has one restriction, x = 3. Next, note that x = —2 makes the numerator of
equation (9) zero and is not a restriction. Hence, x = —2 is a zero of the function.

Recall that a function is zero where its graph crosses the horizontal axis. Hence, the
graph of f will cross the z-axis at (—2,0), as shown in Figure 4.

Note that the rational function (9) is already reduced to lowest terms. Hence, the
restriction at x = 3 will place a vertical asymptote at x = 3, which is also shown in
Figure 4.

104

—
e}

=3
Figure 4. Plot and label the z-
intercept and vertical asymptote.

v

At this point, we know two things:
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646 CHAPTER 7 RATIONAL FUNCTIONS

1. The graph will cross the z-axis at (—2,0).

2. On each side of the vertical asymptote at x = 3, one of two things can happen.
Either the graph will rise to positive infinity or the graph will fall to negative
infinity.

To discover the behavior near the vertical asymptote, let’s plot one point on each
side of the vertical asymptote, as shown in Figure 5.

Y
]_OA

y=(z+2)/(z-3)

v lr =3
Figure 5. Additional points help determine the behavior near the verti-
cal asymptote.

Consider the right side of the vertical asymptote and the plotted point (4,6) through
which our graph must pass. As the graph approaches the vertical asymptote at x = 3,
only one of two things can happen. Either the graph rises to positive infinity or the
graph falls to negative infinity. However, in order for the latter to happen, the graph
must first pass through the point (4, 6), then cross the x-axis between z = 3 and z =4
on its descent to minus infinity. But we already know that the only z-intercept is at the
point (2,0), so this cannot happen. Hence, on the right, the graph must pass through
the point (4, 6), then rise to positive infinity, as shown in Figure 6.

Y

1011 X

\ ) 3
Figure 6. Behavior near the vertical
asymptote.
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SECTION 7.3 GRAPHING RATIONAL FUNCTIONS 647

A similar argument holds on the left of the vertical asymptote at x = 3. The graph
cannot pass through the point (2, —4) and rise to positive infinity as it approaches the
vertical asymptote, because to do so would require that it cross the x-axis between
x = 2 and x = 3. However, there is no z-intercept in this region available for this
purpose. Hence, on the left, the graph must pass through the point (2, —4) and fall
to negative infinity as it approaches the vertical asymptote at x = 3. This behavior is
shown in Figure 6.

Finally, what about the end-behavior of the rational function? What happens to
the graph of the rational function as x increases without bound? What happens when
x decreases without bound? One simple way to answer these questions is to use a table
to investigate the behavior numerically. The graphing calculator facilitates this task.

First, enter your function as shown in Figure 7(a), then press 2nd TBLSET to open
the window shown in Figure 7(b). For what we are about to do, all of the settings in
this window are irrelevant, save one. Make sure you use the arrow keys to highlight ASK
for the Indpnt (independent) variable and press ENTER to select this option. Finally,
select 2nd TABLE, then enter the z-values 10, 100, 1000, and 10000, pressing ENTER
after each one.

Flotl Flotz Flots AELE SETUF b, e
WNHBCEFZ DA CE=F0 Thlstart=04 10 17143
~Wz=1 aThl=1 100 10E4E
“Me= Indrnt: Auto [E(EE T R
H$H= DerFehnd: =

7 E=

“NE=

wIla= W=

(a) (b) (c)
Figure 7. Using the table feature of the graphing calculator to investigate the end-behavior
as x approaches positive infinity.

Note the resulting y-values in the second column of the table (the Y1 column) in
Figure 7(c). As z is increasing without bound, the y-values are greater than 1, yet
appear to be approaching the number 1. Therefore, as our graph moves to the extreme
right, it must approach the horizontal asymptote at y = 1, as shown in Figure 9.

A similar effort predicts the end-behavior as x decreases without bound, as shown
in the sequence of pictures in Figure 8. As x decreases without bound, the y-values
are less than 1, but again approach the number 1, as shown in Figure 8(c).
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Flotl Flotz Flokz HELE SETUF i W1

RV 1= LS SRR P ThlStart=1H 10 G1EZH

~Ne=l =Thl=01 -ing | BEihE

wNa= Indent: Auto EEE “ipe .| Baget

“-$H= DerFend: = '

wMe=

WE=

o =

(a) (b) (c)

Figure 8. Using the table feature of the graphing calculator to investigate the end-behavior

as x approaches negative infinity.

The evidence in Figure 8(c) indicates that as our graph moves to the extreme left,
it must approach the horizontal asymptote at y = 1, as shown in Figure 9.

Y
1011

v Tr = 3
Figure 9. The graph approaches the
horizontal asymptote y = 1 at the ex-

treme right- and left-ends.

What kind of job will the graphing calculator do with the graph of this rational func-
tion? In Figure 10(a), we enter the function, adjust the window parameters as shown
in Figure 10(b), then push the GRAPH button to produce the result in Figure 10(c).

Flokl Flotz Flots: THOON]
SAECEFZ YA CR=30 Tamin=-14
~%z=1 amax=16
~r= wecl=1 -
“Hy= Ymin=-1H
wWe= “max=1H
wHE= Ve l=1
W= arres=1
(a) (b) (c)

Figure 10. Drawing the graph of the rational function with the graphing calculator.

As was discussed in the first section, the graphing calculator manages the graphs of
“continuous” functions extremely well, but has difficulty drawing graphs with disconti-
nuities. In the case of the present rational function, the graph “jumps” from negative
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SECTION 7.3 GRAPHING RATIONAL FUNCTIONS 649

infinity to positive infinity across the vertical asymptote x = 3. The calculator knows
only one thing: plot a point, then connect it to the previously plotted point with a
line segment. Consequently, it does what it is told, and “connects” infinities when it
shouldn’t.

However, if we have prepared in advance, identifying zeros and vertical asymptotes,
then we can interpret what we see on the screen in Figure 10(c), and use that infor-
mation to produce the correct graph that is shown in Figure 9. We can even add the
horizontal asymptote to our graph, as shown in the sequence in Figure 11.

HZ Flotl  Flaktz  Flots THOON]
WA BCEFZ YA CR=30 tTrmin=-14
-%zB1 amax=1A
z=N necl=1
“Ny= Ymin=-18
“Ne= Ymax=1A
Me= Y=zl=1
MNe= ares=1

(a) (b) (c)

Figure 11. Adding a suspected horizontal asymptote.
——

This is an appropriate point to pause and summarize the steps required to draw the
graph of a rational function.
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Procedure for Graphing Rational Functions. Consider the rational function

fa) ag + a1z + asx® + - - - + anz™
) = .
by + b1x + box2 + - - - + bypx™

To draw the graph of this rational function, proceed as follows:

1. Factor the numerator and denominator of the rational function f.

2. Identify the domain of the rational function f by listing each restriction, values
of the independent variable (usually z) that make the denominator equal to
ZETo.

3. Identify the values of the independent variable that make the numerator of f
equal to zero and are not restrictions. These are the zeros of f and they provide
the z-coordinates of the z-intercepts of the graph of the rational function. Plot
these intercepts on a coordinate system and label them with their coordinates.

4. Cancel common factors to reduce the rational function to lowest terms.

— The restrictions of f that remain restrictions of this reduced form will place
vertical asymptotes in the graph of f. Draw the vertical asymptotes on your
coordinate system as dashed lines and label them with their equations.

— The restrictions of f that are not restrictions of the reduced form will
place “holes” in the graph of f. We’ll deal with the holes in step 8 of this
procedure.

5. To determine the behavior near each vertical asymptote, calculate and plot one
point on each side of each vertical asymptote.

6. To determine the end-behavior of the given rational function, use the table
capability of your calculator to determine the limit of the function as x ap-
proaches positive and/or negative infinity (as we did in the sequences shown in
Figure 7 and Figure 8). This determines the horizontal asymptote. Sketch
the horizontal asymptote as a dashed line on your coordinate system and label
it with its equation.

7. Draw the graph of the rational function.

8. If you determined that a restriction was a “hole,” use the restriction and the
reduced form of the rational function to determine the y-value of the “hole.”
Draw an open circle at this position to represent the “hole” and label the “hole”
with its coordinates.

9. Finally, use your calculator to check the validity of your result.

’

Let’s look at another example.

» Example 10. Sketch the graph of the rational function

[

2 -3z —4

(11)

We will follow the outline presented in the Procedure for Graphing Rational Func-
tions.

Step 1: First, factor both numerator and denominator.
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T —2

flw) = (z+ 1)(z —4)

(12)

Step 2: Thus, f has two restrictions, £ = —1 and = = 4. That is, the domain of f is
Dy={s:x# —1,4}.
Step 3: The numerator of equation (12) is zero at z = 2 and this value is not a

restriction. Thus, 2 is a zero of f and (2,0) is an a-intercept of the graph of f, as
shown in Figure 12.

Step 4: Note that the rational function is already reduced to lowest terms (if it weren’t,
we’d reduce at this point). Note that the restrictions z = —1 and =z = 4 are still
restrictions of the reduced form. Hence, these are the locations and equations of the
vertical asymptotes, which are also shown in Figure 12.

]_QA

(2,0)

—
(e}

r=4
Figure 12. Plot the z-intercepts and
draw the vertical asymptotes.

r=—1"y

All of the restrictions of the original function remain restrictions of the reduced form.
Therefore, there will be no “holes” in the graph of f.

Step 5: Plot points to the immediate right and left of each asymptote, as shown in
Figure 13. These additional points completely determine the behavior of the graph
near each vertical asymptote. For example, consider the point (5,1/2) to the immediate
right of the vertical asymptote x = 4 in Figure 13. Because there is no z-intercept
between x = 4 and x = 5, and the graph is already above the z-axis at the point
(5,1/2), the graph is forced to increase to positive infinity as it approaches the vertical
asymptote z = 4. Similar comments are in order for the behavior on each side of each
vertical asymptote.

Step 6: Use the table utility on your calculator to determine the end-behavior of the
rational function as x decreases and/or increases without bound. To determine the
end-behavior as z goes to infinity (increases without bound), enter the equation in
your calculator, as shown in Figure 14(a). Select 2nd TBLSET and highlight ASK for
the independent variable. Select 2nd TABLE, then enter 10, 100, 1000, and 10000, as
shown in Figure 14(c).
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Figure 13. Additional points help determine the behavior near the ver-
tical asymptote.
WS Flobl  Flatz  Flot: HELE SETUR & Y
W= CR=20 0 0R+]1 0 TblStart=18 10 1zdzd
= & = 100 il
=N Indrht! Auto EEE L | e
-.$3= OeFend: I H=
. |_|=
He=
NWE= A=
(a) (b) (c)

Figure 14. Examining end-behavior as x approaches positive infinity.

If you examine the y-values in Figure 14(c), you see that they are heading towards
zero (1e—4 means 1 x 10™#, which equals 0.0001). This implies that the line y = 0 (the
x-axis) is acting as a horizontal asymptote.

You can also determine the end-behavior as = approaches negative infinity (decreases
without bound), as shown in the sequence in Figure 15. The result in Figure 15(c)
provides clear evidence that the y-values approach zero as x goes to negative infinity.
Again, this makes y = 0 a horizontal asymptote.

¥= Flotl  Flokz  Flots
WMWABCE=20 00K+
S

~Hz=l

M=

Ny=

MNe=

M=

(a)
Figure 15.

HELE SETUF & Y
ThlStart=14 - -.0gEz
~Thl=1 -1og | -.0088
Indrhtt Auto [E(EE e | R
O=Frend: I H=
=
(b) (c)

Add the horizontal asymptote y = 0 to the image in Figure 13.

Examining end-behavior as x approaches negative infinity.

Step 7: We can use all the information gathered to date to draw the image shown in

Figure 16.
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]_pu

(2,0)

3
=\
S

rz=—1%y r=4
Figure 16. The completed graph
runs up against vertical and horizon-
tal asymptotes and crosses the z-axis
at the zero of the function.

Step 8: As stated above, there are no “holes” in the graph of f.

Step 9: Use your graphing calculator to check the validity of your result. Note how
the graphing calculator handles the graph of this rational function in the sequence in
Figure 17. The image in Figure 17(c) is nowhere near the quality of the image we
have in Figure 16, but there is enough there to intuit the actual graph if you prepare
properly in advance (zeros, vertical asymptotes, end-behavior analysis, etc.).

HZ Flokl  Flakz  Flots THOOL

SBECE-Z20ACEFL tTrmin=-14

S amax=16

=N Wecl=1 1
M= Ymin=-16 K
-My= Ymax=1H

“Ne= Y=zl=1

M= ares=1

(a) (b) (c)
Figure 17. The user of the graphing calculator must decipher the image in the calculator’s
view screen.

_<>_
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