# Geometry 

## Chapter 13 2013-2014

Coordinate Geometry
Slope, Distance, Midpoint
Equation of a Circle
Equation of a line

## System of Equations Graphically

Proofs

# Coordinate Geometry 

| Date <br> Due | Section | Topics | Assignment <br> Written Exercises |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 13-2 \\ & 13-3 \end{aligned}$ | Slope of a line <br> Parallel and Perpendicular Lines <br> Prove Right Triangle | Pg. 532-533 \#1-11 odd, 16, 20, 21 $\text { Pg. 537-538 \#5, 6, } 9$ |
|  | $\begin{aligned} & 13-1 \\ & 13-5 \end{aligned}$ | The Distance Formula, Equation of a Circle <br> The Midpoint Formula <br> Type of Triangle by Sides | Pg. 526 \#9-27 odd, 31, 36, 41 <br> Pg. 545-546 (bottom of Page) \#2-8 Even, 13, 14, 18, 20 <br> Worksheet \#s 14, 18, 20 |
|  |  | Equation of lines with Triangle: Median, Perpendicular Bisector, Altitude | Pg. 555: 19-29 odd STUDY for quiz |
| Coordinate Geometry Proof |  |  |  |
|  | 13-7 | Organizing Coordinate Proofs | Pg. 555: 19-29 odd |
|  | $13-8$ \& 13-9 | Coordinate Geometry Proofs | Worksheet \# |
|  |  | Solve Systems of Equations Graphically | Worksheet \# |
|  | Review | Chapter Review | Worksheet \# |

*Additional suggested review
pg. 199 \#9-11 (Chapter Test)
pg. 547 \#1-7, 10, 11, 15 (Self Test 1)
Pg. 558-559 \#2-10 Even
pg. 563 \#6-9 all (Self Test 2)
Pg. 567 \#1-25, Except \#14
Any question not completed from the various worksheets! IF YOU HAVE QUESTIONS, PLEASE COME IN FOR EXTRA HELP!

Learn the math by doing the Math!

Name $\qquad$ Geometry
Date $\qquad$ Coordinate Plane Intro.

Remember from last year's Algebra Course:

| Quadrants: | II | 1 |
| :---: | :---: | :---: |
|  | III | IV |
| given 2 points: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and ( $\mathrm{x}_{2}, \mathrm{y}_{2}$ ) |  |  |
| Slope: $\mathrm{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}$ |  |  |

Equations of Lines:

1) $y$-intercept form (need slope and $y$-intercept)

$$
\mathrm{y}=\mathrm{mx}+\mathrm{b}
$$

2) point-slope form (need 1 point \& slope)

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

3) standard form

$$
A x+B y=C
$$

New for Chapter 13:

Distance: $\mathrm{D}=\sqrt{\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}}$
equation of a circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$
with center: $(\mathrm{h}, \mathrm{k})$
with radius of length $r$
Midpoint Formula: $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
perpendicular bisector: equation of line through the midpoint of a side and perpendicular to that side

1) Find the slope of the side the perpendicular bisector will intersect
2) Use the negative reciprocal slope for perpendicular (unless special case with vertical \& horizontal)
3) Find the midpoint of the side the perpendicular bisector will intersect
4) Substitute the midpoint and the perpendicular slope:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

5) Solve equation for $y=m x+b$

## Section 13-2: The Slope of a Line <br> Section 13-3: Parallel and Perpendicular Lines

1. What can you say about the slope of a line (be specific) that is parallel to:
a) a vertical line
b) a horizontal line
c) any other line
2. What can you say about the slope of a line (be specific) that is perpendicular to:
a) a vertical line
b) a horizontal line
c) any other line
3. The vertices of $\triangle Q R S$ are $Q(8,7), R(-1,1)$, and $S(-3,4)$. Find the slopes of the sides of the triangle. Then state whether $\triangle Q R S$ is a right triangle and explain why.
4. The vertices of $\Delta R S T$ are $R(-5,6), S(-1,2)$ and $T(5,8)$. Use the slopes to determine whether $\triangle R S T$ is a right triangle and explain.
5. Find the slope of $\overline{A B}$. Please simplify all answers to their simplest form.
a. $A(4,6), B(16,12)$
e. $A(9,10), B(-1,15)$
b. $A(4,12), B(-3,-2)$
f. $A(12,-1), B(10,1)$
c. $A(-4,18), B(-4,22)$
g. $A(15,-6), B(18,0)$
d. $A(6,13), B(-9,13)$
6. Write the equation of a line that is parallel to $y=2 x+5$ and pass through the point $(0,8)$.

Write the slope of a line that is parallel to each line.
7. $y=12-x$
8. $2 x-y=4$
9. $3 x=18+2 y$
10. $-5 x+2 y=6$
11. $x=5$
12. $y=-1$

Write the slope of a line that is perpendicular to each line.
13. $y=5+x$
14. $2 x-4 y=12$
15. $x=7 y-14$
16. $-5 x-3 y=6$
17. $x=8$
18. $y=-7$

Write an equation in slope-intercept form for a line containing the point $(-2,-5)$ and:
19. is parallel to the line $2 x-y=6$
20. is perpendicular to the line $y=-2 x-3$

Write an equation in slope-intercept form for a line containing the point ( $1,-4$ ) and:
21. is parallel to the line $3 x=y-6$
22. is perpendicular to the line $6 y=-9 x-12$

Write an equation for a line containing the point $(-4,5)$ and:
23. is parallel to the line $y=9$
24. is perpendicular to the line $x=-2$

Write an equation for a line containing the point $(-1,-7)$ and:
25 . is parallel to the line $x=2$
26. is perpendicular to the line $x=-1$

## Section 13-1: The Distance Formula \& The Equation of a Circle

Find the distance between the points. Express your answer in simplest radical form.

1. $(-1,1)$ and $(3,3)$
2. $(0,4)$ and $(-3,2)$
3. $(-1,7)$ and $(2,5)$
4. $(-5,-3)$ and $(4,6)$
5. $(-7,5)$ and $(3,0)$
6. $(-2,1)$ and $(-6,5)$

For each of the following find the exact value of $A B$ (all answers should be in simplest radical form).
7. $A(-1,5), B(418$,
8. $A(9,3), B(8,-4)$
9. $A(-3,6), B(5,-4)$
10. $A(8,8), B(10,2)$
11. $A(0,20), B(10,-10)$
12. $A(0,-2), B(\sqrt{2}, 3)$
13. $A(-2,-6), B(-157,-6)$
14. The vertices of $\triangle D E F$ are $D(4,1), E(2,-4)$ and $F(-1,-1)$. Use slopes to show whether $\triangle D E F$ is a right triangle. Then find the distance of all of the sides and determine whether the triangle is scalene, isosceles, or equilateral.
15. The vertices of $\triangle A B C$ are $A(4,5), B(8,13)$, and $C(-4,9)$. Use slopes to show whether $\triangle A B C$ is a right triangle. Then find the distance of all of the sides and determine whether the triangle is scalene, isosceles, or equilateral.
16. Given $\Delta R S T$ with vertices $\mathrm{R}(0,6), \mathrm{S}(2,0)$, and $\mathrm{T}(8,2)$, show that $\Delta R S T$ is a right triangle.
17. Given points $A(0,0), B(4,8)$ and $C(6,2)$ as the vertices of $\triangle A B C$, show that $\triangle A B C$ is isosceles.
18. $\triangle A B C$ has vertices $A(-2,-2), B(5,-1)$, and $C(-1,5)$. Use coordinate geometry to show that $\triangle A B C$ is isosceles.
19. The vertices of $\triangle A B C$ are $A(3,-1), B(7,3)$, and $C(-1,7)$.

Prove that $\triangle A B C$ is isosceles.
Prove that $\triangle A B C$ is not equilateral.
20. The coordinates of the vertices of $\Delta T A G$ are $T(1,3), A(8,2)$, and $G(5,6)$. Prove that $\triangle T A G$ is an isosceles right triangle.

For each of the following, provide an equation of a circle given the conditions provided.
21. center ( 6,8 ) $r=15$
22. center $(-12,15) r=\frac{1}{2}$
23. center $(0,-1) d=10$
24. center $(0,0) r=\sqrt{6}$
25. center $(-19,4.5) r=3 \sqrt{2}$

Use the equation provided to find the center and radius. All answers should be in simplest form.
26. $(x-4)^{2}+(y-18)^{2}=49$
27. $(x+7)^{2}+(y-1)^{2}=15$
28. $(x-2.1)^{2}+(y+1)^{2}=98$
29. $x^{2}+(y+10)^{2}=363$

Given the equation, find the exact value of the $x$ - and $y$-intercepts.
30. $(x+1)^{2}+(y-2)^{2}=5$
31. Find the equation of the circle with a center $(0,8)$ which passes through point $(6,16)$.
32. Find the equation of the circle which has a diameter with endpoints of $(-5,2)$ and (1, 2).

## Section 13-5: The Midpoint Formula

Find the coordinates of the midpoint of the segment that joins the given points.

1. $(-5,2)$ and $(4,-2)$
2. $(3,0)$ and $(-5,5)$
3. $(-1,1)$ and $(3,3)$
4. $(1.3,2.4)$ and $(2.5,1.6)$
5. $(a, b)$ and ( $c, d)$
6. $M$ is the midpoint of $\overline{A B}$. Given $M(-3,0)$ and $A(4,6)$, find the coordinates of point $B$.
7. Find the equation of the perpendicular bisector of $\overline{Q R}$, if $Q(-6,0)$ and $R(12,0)$.
8. Given $\overline{A B}$ with $A(-2,6)$ and $B(-8,10)$. Write the equation of the perpendicular bisector of $\overline{A B}$.
9. Graph $\triangle A B C$ with
$A(-3,-2), B(-1,5), C(7,1)$
$b$. Find the equation of the perpendicular bisector of side $B C$.
10. Graph $\triangle A B C$ with
$A(-4,-2), B(-3,6), C(8,6)$
$b$. Find the equation of the perpendicular bisector of side $A C$.

Chapter 13 Review... so far

1. The coordinates of the midpoint of segment AB are $(-7,6)$. If the coordinates of point $A$ are $(2,-4)$ and the coordinates of $B$ are $(-16, y)$, what is the value of $y$ ?
2. The coordinates of A and B are ( $2 \mathrm{a}, 4 \mathrm{~b}$ ) and ( $8 \mathrm{a}, 6 \mathrm{~b}$ ), respectively. Express in terms of a and b , the coordinates of the midpoint of segment AB .
3. Write and equation of the line that passes through points $(2,3)$ and $(4,5)$.
4. What is the length of the line segments joining points $J(1,5)$ and $K(3,9)$ in simplest radical form.
5. Write in slope-intercept form the equation of a line perpendicular to $4 x+y=10$.
6. Find the slope of the lines $6 x+3 y=10$ and $y=-2 x+5$.

What can you conclude about these lines?
7. Use algebra to find each point at which the line $x-2 y=-5$ intersects the circle $x^{2}+y^{2}=25$.
8. Find an equation of the line through $(1,2)$ and parallel to the line $y=3 x-7$. (answer in point-slope form)
9. Give an equation of the perpendicular bisector of the segment joining $(5,1)$ and $(-3,7)$.
10. Write the equation of a line through $(5,-1)$ and parallel to the line $x=6$.
11. Find the center and radius of the circle with equation $(x-4)^{2}+(y+7)^{2}=\frac{1}{25}$.
12. Write the equation of a circle whose canter is $(-2,0)$ and has a radius of $\sqrt{11}$.
13. Sketch the graph of $(x-3)^{2}+(y+2)^{2}=36$.
14. Show that triangle with vertices $\mathrm{A}(-3,4), \mathrm{M}(3,1)$ and $\mathrm{Y}(0,-2)$ is isosceles.
15. Write the equation of a circle that has center $(-2,-4)$ and passes through the point $(3,8)$.

Altitude, Median, Bisectors WS
Geometry
Chapter 13

Name $\qquad$
Date $\qquad$ Block $\qquad$
altitude: equation of line through vertex and perpendicular to the opposite side

1) Find the slope of the side that the altitude will intersect
2) Use the negative reciprocal slope for perpendicular (unless special case with vertical \& horizontal)
3) Substitute the vertex and the perpendicular slope into:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

4) Solve equation for $y=m x+b$
median: equation of line through vertex and midpoint of the opposite side
5) Find the midpoint of the side opposite the vertex
6) Calculate the slope for the median line using the midpoint and the vertex in the slope formula
7) Substitute the vertex point and the slope into:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

4) Solve equation for $y=m x+b$
perpendicular bisector: equation of line through the midpoint of a side and perpendicular to that side
5) Find the slope of the side the perpendicular bisector will intersect
6) Use the negative reciprocal slope for perpendicular (unless special case with vertical \& horizontal)
7) Find the midpoint of the side the perpendicular bisector will intersect
8) Substitute the midpoint and the perpendicular slope:
$y-y_{1}=m\left(x-x_{1}\right)$
9) Solve equation for $y=m x+b$

Use graph paper to graph each triangle. Find the equation of the line algebraically, showing all work. Then graph the equation of the line on your graph with the triangle.
1.
a) Graph $\triangle \mathrm{ABC}$. $\mathrm{A}(1,3), \mathrm{B}(3,8), \mathrm{C}(5,6)$
b) Find the equation of altitude $\overline{\mathrm{BF}}$.
b) Find the equation of the median from vertex $B$.
3.
a) Graph $\triangle \mathrm{ABC}$
$\mathrm{A}(-2,1) \mathrm{B}(-1,9) \mathrm{C}(4,5)$
2.
a) Graph $\triangle \mathrm{ABC}$ $\mathrm{A}(-4,-2) \mathrm{B}(4,-3) \mathrm{C}(-1,-8)$
b) Find the equation of altitude $\overline{\mathrm{BF}}$.
4.
a) Graph $\triangle \mathrm{ABC}$ $\mathrm{A}(-7,-2) \mathrm{B}(4,2) \mathrm{C}(3,-6)$
b) Find the equation of the median which passes through vertex B.
5.
a) Graph $\triangle \mathrm{ABC}$

$$
\mathrm{A}(-3,-2) \mathrm{B}(-1,5) \mathrm{C}(7,1)
$$

b) Find the equation of the perpendicular bisector of side $B C$.
6.
a) Graph $\triangle \mathrm{ABC}$. $\mathrm{A}(-4,-2) \mathrm{B}(-3,6) \mathrm{C}(8,6)$
b) Find the equation of the perpendicular bisector of side AC.

Name
$\qquad$ "To Prove" WS

## Necessary to Prove <br> (for Coordinate Geometry Proofs)

I. Triangles

1. Isosceles 』: 2 segments $\cong$ (distance)
2. Equilateral $\mathbf{\Delta}$ : 3 segments $\cong$ (distance)
3. Right 4: (choose one)
a. Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$
b. 2 sides $\perp$ (use slope - show negative reciprocal)
II. Quadrilaterals
4. Parallelogram: (choose one)
a. Both pairs of opposite sides $\cong$ (distance)
b. Both pairs of opposite sides || (slope)
c. Same set of opposite sides both \| AND $\cong$ (slope \& distance of 1 pr opposite sides)
d. Diagonals bisect each other (midpoint)
5. Rectangle: (choose one)
a. Parallelogram AND one right $\angle$
b. Parallelogram AND diagonals $\cong$
6. Rhombus: (choose one)
a. 4 sides $\cong$ (distance)

NOTE: If the slopes of two lines/segments are 0 and undefined, then the lines/segments are horizontal and vertical respectively. Therefore, the lines/segments are perpendicular.
b. Parallelogram and 2 consecutive sides $\cong$
4. Square: (choose one)
a. 4 sides $\cong$ and 1 right $\angle$
b. 4 sides $\cong$ and diagonals $\cong$
5. Trapezoid:
a. Bases || AND legs NOT ||
6. Isosceles Trapezoid:
a. Bases || AND legs NOT|| AND legs $\cong$

Using the information provided, prove the given quadrilateral. Write a complete, detailed paragraph.

1. Prove $A B C D$ is a Parallelogram if:

Slope $\overline{A B}=4$
Slope $\overline{B C}=\frac{-1}{2}$
Slope $\overline{C D}=4$
Slope $\overline{A D}=\frac{-1}{2}$
2. Prove $A B F E$ is a Parallelogram if:
$A B=13$
$B F=21$
FE $=13$
$A E=21$
3.Prove QWER is a Rhombus if:

QW=12
$W E=12$
$E R=12$
$Q R=12$
4. Prove that $A B C D$ is a rectangle if:

Slope $\overline{A B}=-3$
Slope $\overline{B C}=\frac{1}{3}$
Slope $\overline{C D}=-3$
slope $\overline{A D}=\frac{1}{3}$
5. Prove that SQUA is a square if:

Slope $\overline{S Q}=\frac{7}{8}$
Slope $\overline{Q U}=\frac{-8}{7}$
Slope $\overline{U A}=\frac{7}{8}$
Slope $\overline{A S}=\frac{-8}{7}$
$U A=1$
$A S=1$
6. Prove that YUOP is a Parallelogram if

Slope $\overline{Y U}=1$
slope $\overline{O P}=1$
$\mathrm{YU}=8$
$O P=8$
7. Prove TRAP is a trapezoid if

Slope $\overline{T R}=1$
Slope $\overline{R A}=-1$
slope $\overline{A P}=1$
Slope $\overline{T P}=\frac{1}{2}$
Can you tell me anything else about the trapezoid with the given information?
8. The vertices of quadrilateral $A B C D$ are $A(1,1), B(3,4), C(9,1)$, and $D(7,-2)$. Prove that $A B C D$ is a parallelogram by showing that both pair of opposite sides are parallel.
9. Quadrilateral $A B C D$ has vertices $A(4,4), B(2,0), C(-4,-2)$, and $D(-2,2)$. Prove that $A B C D$ is a parallelogram by showing that opposite sides are congruent.
10. Quadrilateral $A B C D$ has vertices $A(1,8), B(10,10), C(9,6)$, and $D(0,4)$. Prove that $A B C D$ is a parallelogram by showing that one pair of opposite sides are both parallel and congruent.
11. Quadrilateral $A B C D$ has vertices $A(0,-1), B(6,1), C(8,7), A N D D(2,5)$. Prove that $A B C D$ is a parallelogram by showing that the diagonals bisect each other.
12. The vertices of quadrilateral $P Q R S$ are $P(0,2), Q(4,8), R(7,6)$, and $S(3,0)$. Prove that PQRS is a rectangle.
13. Quadrilateral $A B C D$ has vertices $A(5,0), B(2,9), C(-4,7)$, and $D(-1,-2)$. Use slopes to prove that $A B C D$ is a rectangle.
14. Quadrilateral PQRS has vertices $P(0,0), Q(4,3), R(7,-1)$, and $S(3,-4)$. Show that PQRS is a square.
15. Quadrilateral MATH has vertices $M(-1,4), A(4,7), T(7,2)$, and $H(2,-1)$. Prove that MATH is a square.
16. Quadrilateral $A B C D$ has vertices $A(1,-1), B(11,4), C(22,6)$, and $D(12,1)$. What kind of quadrilateral is $A B C D$ and WHY? (hint: check lengths $A B$ \& $B C$ too!)
17. Quadrilateral FGHJ has vertices $F(-2,5), G(-4,1), H(-2,-3)$ and $J(0,1)$. Show that FGHJ is a rhombus.
18. Quadrilateral $A B C D$ has vertices $A(-3,6), B(6,0), C(9,-9)$, and $D(0,-3)$. Prove that $A B C D$ is a parallelogram but NOT a rhombus.
19. Quadrilateral $A B C D$ has vertices $A(0,-1), B(6,1), C(8,7)$, and $D(2,5)$. Show that $A B C D$ is a rhombus by showing that it has 4 congruent sides. Then show that the diagonals of $A B C D$ are perpendicular ( $\overline{A C} \perp \overline{B D}$ ).
20. Quadrilateral $A B C D$ has vertices $A(5,2), B(6,7), C(14,15)$, and $D(19,16)$. What kind of quadrilateral is $A B C D$ and $W H Y$ ? (hint: check lengths $A B \& C D$ too!)
21. Quadrilateral $A B C D$ has vertices $A(-6,3), B(-3,6), C(9,6)$, and $D(-5,-8)$. Prove that $A B C D$ is a trapezoid but NOT an isosceles trapezoid.
22. Quadrilateral DEFG has vertices $D(-4,0), E(0,1), F(4,-1)$, and $G(-4,-3)$. Show that DEFG is a trapezoid but NOT an isosceles trapezoid.
23. Given Triangle TRI with $T(4,1), R(3,0), I(1,4)$. Show that TRI is a right triangle.
24. Given Triangle $A B C$ with $A(-1,4), B(7,0), C(-5,12)$. Show that $A B C$ is isosceles.
25. Given Triangle EFG with $E(-1,-1), F(3,2), G(-4,3)$. Show that $E F G$ is an isosceles right triangle.
26. Given Triangle $W$ TA with $\mathrm{W}(4,7), \mathrm{T}(-1,6), \mathrm{A}(2,1)$. Classify this triangle by its

Coordinate Geometry Proof \#2 Name $\qquad$
Geometry
Date $\qquad$ Block $\qquad$

Show all work on a separate paper, including formulas and reasons for your statements in each proof.

1. Given Quad $A B C D$ with $A(0,0) B(4,2), C(3,3) D(1,2)$. Prove that $A B C D$ is a trapezoid, but not isosceles.
2. Given Quad RECT with $R(1,1) E(5,1) C(5,3) T(1,3)$. Prove that RECT is a rectangle.
3. Given Quad RHOM with $R(6,6) H(11,6) O(8,2) M(3,2)$. Show that RHOM is a rhombus but not a square.
4. Given Quad FOUR with $F(2,4) O(15,4) \cup(16,-8) R(2,-8)$, prove that FOUR is a right trapezoid.
5. Given TRPZ with $T(0,0) R(a, 0) P(a-b, c) Z(b, c)$, prove that TRPZ is an isosceles trapezoid.
6. Given triangle TRI with $T(0,0) R(3,4) I(-4,3)$ is a right isosceles triangle.
7. Given PARL with $P(a, b) A(c, d) R(c+e, d+f) L(a+e, b+f)$, show that PARL is $a$ parallelogram.
8. Given SQUA with $S(5,0) Q(0,5) \cup(-5,0) A(0,-5)$. Prove that SQUA is a square.
9. Given the isosceles trapezoid with points $T(-2,-1) R(1,1) A(6,1) P(9,-1)$. Prove that the diagonals are congruent but do not bisect each other.
10. Given SQUA with $S(-3,1) Q(1,4) A(4,0) R(0,-3)$, show that the diagonals bisect, are perpendicular and are congruent.
11. Given the points $A(1,4) B(-3,8)$ find the equation of the perpendicular bisector.
12. Given the points $A(4,2) B(-6,4)$ find the equation of the perpendicular bisector.
13. Given the points $A(1,5) B(6,-1)$. Find the equation of the line that passes through point $C(2,-7)$ and is parallel to $\overline{A B}$.
14. a. Prove RECT is a rectangle given $R(4,1) E(9,1) \quad C(9,-5)$ and $T(4,-5)$.
b. Prove the diagonals of the rectangle bisect each other
15. a. Prove SQUA is a Square if $S(-1,-1) Q(3,-1) \quad U(3,-5) A(-1,-5)$.
b. Prove that the diagonals are perpendicular
16. a. Prove TRAP is a right trapezoid $T(0,0) R(0,5) A(1,5)$ and $P(1,-1)$.
b. Prove that the trapezoid is not isosceles.
17. Given $\overline{A B}$ with midpoint $M$. Given $A(5,-1)$ and $M(-1,3)$, find $B$.
18. Given $\overline{A B}$ with midpoint $M$. Given $M(23,-7.2)$ and $B(13,-5.63)$, find $A$.
19. Determine the equation of a circle with a diameter of 8 and a center of $(-4,6)$.

20 Find the equation of a circle with endpoints on its diameter of $(4,5)$ and $(-2,-3)$.
21. Given the equation of line $m$ as $2 x+y=8$, find the equation of the line parallel to $m$ going through the point $(-4,1)$.
22. Given the equation of line I as $x+4 y=7$, find the equation of the line perpendicular to I going through the point ( $-1,-3$ ).

Generic Coordinate Proof WS \#3
Geometry

Name $\qquad$
Date $\qquad$ Block $\qquad$

1. The vertices of $\triangle D E F$ are $D(0,0), E(a, 0)$, and $F(0, b)$. Find the lengths of each side of the triangle. What kind of triangle is this (scalene, isosceles, or equilateral)?
2. The vertices of $\triangle A B C$ are $A(-a, 0), B(a, 0)$, and $C(0, b)$. Find the lengths of the sides of the triangle. What kind of triangle is this (scalene, isosceles, or equilateral)?
3. Given Rectangle $A B C D$ with vertices $A(0,0), B(a, 0), C(a, b)$, and $D(0, b)$. Show that the diagonals are congruent.
4. Quadrilateral $A B C D$ has vertices $A(-a, 0), B(a, 0), C(a, b)$, and $D(-a, b)$. Prove that $A B C D$ is a rectangle.
5. Quadrilateral QRST has vertices $Q(0,0), R(d, e), S(d, e+f)$, and $T(0, f)$. Show that QRST is a parallelogram.
6. The vertices of RSTV are $R(0,0), S(a, 0), T(a+b, c)$, and $V(b, c)$.
a. Find the slopes of $\overline{R V}$ and $\overline{S T}$.
b. Find the lengths RV and ST.
c. Show that RSTV is a parallelogram (one pair opposite sides || and $\cong)$
7. The vertices of quadrilateral $A B C D$ are $A(0,0), B(r, s), C(r, s+t)$, and $D(0, t)$.
a. Represent the slopes of $\overline{A B}$ and $\overline{C D}$.
b. Represent the lengths of $A B$ and $C D$.
c. Show that $A B C D$ is a parallelogram.
8. The vertices of $A B C D$ are $A(0,0), B(a, 0), C(a, b)$, and $D(0, b)$.
a. Show that $A B C D$ is a parallelogram.
b. Show the diagonals are congruent $(\overline{A C} \cong \overline{B D})$.
c. Show that $A B C D$ is a rectangle.
9. The vertices of GAME are $G(r, s), A(0,0), M(t, 0)$, and $E(t+r, s)$. Prove that GAME is a parallelogram.
10. Given Rhombus $A B C D$ with vertices $A(0,0), B(a, 0), C(a+b, c)$, and $D(b, c)$. Prove that the diagonals of a rhombus are perpendicular ( $\overline{A C} \perp \overline{B D}$ ).
11. Quadrilateral $A B C D$ has coordinates $A(0,0), B(6 a, 3 b), C(3 a, 4 b)$, and $D(a, 3 b)$ with $a \neq 0$ and $b \neq 0$.
a. Show that $\overline{A B}|\mid \overline{C D}$.
b. Show that $\overline{A D}$ is not parallel to $\overline{B C}$.
c. Which kind of quadrilateral is $A B C D$ and WHY?

Coordinate Geometry Proofs Name Geometry - Day 2 and 3

Date $\qquad$ Block $\qquad$

Show all work on a separate paper, including formulas and reasons for your statements in each proof.

1. Given Quad $A B C D$ with $A(0,0) B(4,2), C(3,3) D(1,2)$. Prove that $A B C D$ is a trapezoid, but not isosceles.
2. Given Quad RECT with $R(1,1) E(5,1) C(5,3) T(1,3)$. Prove that RECT is a rectangle.
3. Given Quad RHOM with $R(6,6) H(11,6) O(8,2) M(3,2)$. Show that RHOM is a rhombus but not a square.
4. Given Quad FOUR with $F(2,4) O(15,4) \cup(16,-8) R(2,-8)$, prove that FOUR is a right trapezoid.
5. Given TRPZ with $T(0,0) R(a, 0) P(a-b, c) Z(b, c)$, prove that TRPZ is an isosceles trapezoid.
6. Given triangle TRI with $T(0,0) R(3,4) I(-4,3)$ is a right isosceles triangle.
7. Given PARL with $P(a, b) A(c, d) R(c+e, d+f) L(a+e, b+f)$, show that PARL is $a$ parallelogram.
8. Given SQUA with $S(5,0) Q(0,5) \cup(-5,0) A(0,-5)$. Prove that SQUA is a square.
9. Given the isosceles trapezoid with points $T(-2,-1) R(1,1) A(6,1) P(9,-1)$. Prove that the diagonals are congruent but do not bisect each other.
10. Given SQUA with $S(-3,1) Q(1,4) A(4,0) R(0,-3)$, show that the diagonals bisect, are perpendicular and are congruent.
11. Given the points $A(1,4) B(-3,8)$ find the equation of the perpendicular bisector.
12. Given the points $A(4,2) B(-6,4)$ find the equation of the perpendicular bisector.
13. Given the points $A(1,5) B(6,-1)$. Find the equation of the line that passes through point $C(2,-7)$ and is parallel to $\overline{A B}$.
14. a. Prove RECT is a rectangle given $R(4,1) E(9,1) \quad C(9,-5)$ and $T(4,-5)$.
b. Prove the diagonals of the rectangle bisect each other
15. a. Prove SQUA is a Square if $S(-1,-1) Q(3,-1) \quad U(3,-5) A(-1,-5)$.
c. Prove that the diagonals are perpendicular
16. a. Prove TRAP is a right trapezoid $T(0,0) R(0,5) A(1,5)$ and $P(1,-1)$.
c. Prove that the trapezoid is not isosceles.
17. Given $\overline{A B}$ with midpoint $M$. Given $A(5,-1)$ and $M(-1,3)$, find $B$.
18. Given $\overline{A B}$ with midpoint $M$. Given $M(23,-7.2)$ and $B(13,-5.63)$, find $A$.
19. Determine the equation of a circle with a diameter of 8 and a center of $(-4,6)$.

20 Find the equation of a circle with endpoints on its diameter of $(4,5)$ and $(-2,-3)$.
21. Given the equation of line $m$ as $2 x+y=8$, find the equation of the line parallel to $m$ going through the point $(-4,1)$.
22. Given the equation of line $I$ as $x+4 y=7$, find the equation of the line perpendicular to I going through the point ( $-1,-3$ ).
23. The vertices of $\triangle D E F$ are $D(0,0), E(a, 0)$, and $F(0, b)$. Find the lengths of each side of the triangle. What kind of triangle is this (scalene, isosceles, or equilateral)?
24. The vertices of $\triangle A B C$ are $A(-a, 0), B(a, 0)$, and $C(0, b)$. Find the lengths of the sides of the triangle. What kind of triangle is this (scalene, isosceles, or equilateral)?
25. Given Rectangle $A B C D$ with vertices $A(0,0), B(a, 0), C(a, b)$, and $D(0, b)$. Show that the diagonals are congruent.
26. Quadrilateral $A B C D$ has vertices $A(-a, 0), B(a, 0), C(a, b)$, and $D(-a, b)$. Prove that $A B C D$ is a rectangle.
27. Quadrilateral QRST has vertices $Q(0,0), R(d, e), S(d, e+f)$, and $T(0, f)$. Show that QRST is a parallelogram.
28. The vertices of RSTV are $R(0,0), S(a, 0), T(a+b, c)$, and $V(b, c)$.
d. Find the slopes of $\overline{R V}$ and $\overline{S T}$.
e. Find the lengths RV and ST.
f. Show that RSTV is a parallelogram (one pair opp. sides \| and $\cong$ )
29. The vertices of quadrilateral $A B C D$ are $A(0,0), B(r, s), C(r, s+\dagger)$, and $D(0, t)$.
d. Represent the slopes of $\overline{A B}$ and $\overline{C D}$.
e. Represent the lengths of $A B$ and $C D$.
f. Show that $A B C D$ is a parallelogram.
30. The vertices of $A B C D$ are $A(0,0), B(a, 0), C(a, b)$, and $D(0, b)$.
d. Show that $A B C D$ is a parallelogram.
e. Show the diagonals are congruent ( $\overline{A C} \cong \overline{B D}$ ).
f. Show that $A B C D$ is a rectangle.
31. The vertices of GAME are $G(r, s), A(0,0), M(t, 0)$, and $E(t+r, s)$. Prove that GAME is a parallelogram.
32. Given Rhombus $A B C D$ with vertices $A(0,0), B(a, 0), C(a+b, c)$, and $D(b, c)$. Prove that the diagonals of a rhombus are perpendicular ( $\overline{A C} \perp \overline{B D}$ ).
33. Quadrilateral $A B C D$ has coordinates $A(0,0), B(6 a, 3 b), C(3 a, 4 b)$, and $D(a, 3 b)$ with $a \neq 0$ and $b \neq 0$.
d. Show that $\overline{A B}|\mid \overline{C D}$.
e. Show that $\overline{A D}$ is not parallel to $\overline{B C}$.
f. Which kind of quadrilateral is $A B C D$ and WHY?

Linear Systems
Geometry

Name
Date $\qquad$

Solve the following system of linear equations graphically.

1. $\left\{\begin{array}{l}y=x \\ y=6-x\end{array}\right.$
2. $\left\{\begin{array}{l}y=-x \\ y=x+9\end{array}\right.$
3. $\left\{\begin{array}{l}y=-x+2 \\ y=2 x+5\end{array}\right.$
4. $\left\{\begin{array}{l}y=3 x+1 \\ y=3 x-8\end{array}\right.$
5. $\left\{\begin{array}{l}x-y=6 \\ 2 x+y=0\end{array}\right.$
6. $\left\{\begin{array}{l}4 x+y=-3 \\ 5 x-y=-6\end{array}\right.$
7. $\left\{\begin{array}{l}3 x-9 y=0 \\ -x+3 y=-3\end{array}\right.$
8. $\left\{\begin{array}{l}-2 x+y=-1 \\ x+y=5\end{array}\right.$
9. $\left\{\begin{array}{l}y=\frac{1}{2} x+1 \\ 4 x-8 y=-8\end{array}\right.$
10. $\left\{\begin{array}{l}2 y-x=2 \\ x-2 y=8\end{array}\right.$
11. $\left\{\begin{array}{l}y-2 x=-5 \\ y-x=-3\end{array}\right.$
12. $\left\{\begin{array}{l}6 x+4 y=2 \\ 3 x+2 y=1\end{array}\right.$

Graphing Parabolas \& Circles WS
Name $\qquad$ Geometry

Date $\qquad$
I) Graph each parabola and provide a table of values. Be sure to label your graph!

1. $y=x^{2}-4 x+6$
2. $y=x^{2}+6 x+8$
3. $y=-x^{2}+10 x-20$
4. $y=-x^{2}-6 x-8$
5. $y=2 x^{2}+4 x-1$
6. $y=x^{2}+2 x$
II) Find the center and the radius of the circle. Graph using a compass if you have one..... Be sure to label your graphs!
7. $x^{2}+y^{2}=25$
8. $(x-2)^{2}+(y+1)^{2}=16$
9. $(x+3)^{2}+(y-4)^{2}=4$
10. $x^{2}+(y+1)^{2}=10$
11. $(x-2)^{2}+y^{2}=21$ 12. $(x+3)^{2}+(y+3)^{2}=20$

Solve Systems Graphically WS Geometry

Name $\qquad$
[Parabolas, Circles, Lines]
$\qquad$ Block $\qquad$

Solve the following system of equations graphically. Show all work necessary and check your answers.

1. $\left\{\begin{array}{l}y=x^{2}+2 x+1 \\ y=2 x+5\end{array}\right.$
2. $\left\{\begin{array}{l}y=x^{2}-3 x+2 \\ y=x-1\end{array}\right.$
3. $\left\{\begin{array}{l}y=x^{2}+2 x-1 \\ y=x+1\end{array}\right.$
4. $\left\{\begin{array}{l}y=x^{2}+1 \\ 2 x-y=-4\end{array}\right.$
5. $\left\{\begin{array}{l}y=x^{2}-3 x-10 \\ 3 x-y=19\end{array}\right.$
6. $\left\{\begin{array}{l}2 y=x^{2}-8 x+7 \\ x-y=7\end{array}\right.$
7. $\left\{\begin{array}{l}y=-x^{2}+x-5 \\ 2 y-x=4\end{array}\right.$
8. $\left\{\begin{array}{l}x^{2}+y^{2}=8 \\ y=x\end{array}\right.$
9. $\left\{\begin{array}{l}x^{2}+y^{2}=32 \\ x+y=0\end{array}\right.$
10. $\left\{\begin{array}{l}x^{2}+y^{2}=25 \\ x+y=8\end{array}\right.$
11. $\left\{\begin{array}{l}x^{2}+y^{2}=8 \\ y+4=x\end{array}\right.$
12. $\left\{\begin{array}{l}x^{2}+y^{2}=18 \\ y=6-x\end{array}\right.$
13. $\left\{\begin{array}{l}y=x^{2} \\ y=8-x^{2}\end{array}\right.$
14. $\left\{\begin{array}{l}y=x^{2}-2 x \\ y=-x^{2}+6 x-6\end{array}\right.$

Circle systems extra practice Geometry

Name
Date $\qquad$ Block $\qquad$

Solve the following system of equations graphically and check.

1) $\left\{\begin{array}{l}(x+4)^{2}+(y-2)^{2}=25 \\ x+2 y=10\end{array}\right.$

2) $\left\{\begin{array}{l}(x+2)^{2}+(y+1)^{2}=4 \\ y-x=-1\end{array}\right.$


## Review Coordinate Geometry

1. The coordinates of the vertices of quadrilateral ABCD are $\mathrm{A}(4,1), \mathrm{B}(1,5), \mathrm{C}(-3,2)$, and $\mathrm{D}(0,-2)$. Prove the quadrilateral is a square.

2. The coordinates of the vertices of $\triangle \mathrm{XYZ}$ are $X(1,1), Y(12,-1)$, and $Z(9,5)$.
a. Prove that $\triangle \mathrm{XYZ}$ is a right triangle.
b. Find the area of $\triangle X Y Z$.

3. Quadrilateral ABCD has vertices $\mathrm{A}(-3,-2), \mathrm{B}(9,2)$, $\mathrm{C}(1,6)$, and $\mathrm{D}(-5,4)$. Using coordinate geometry, prove that quadrilateral ABCD is a trapezoid and contains a right angle.

4. Quadrilateral JAME has vertices $\mathrm{J}(2,-2)$, $\mathrm{A}(8,-1), \mathrm{M}(9,3)$, and $\mathrm{E}(3,2)$.
a. Prove that JAME is a parallelogram.
b. Prove that JAME is not a rectangle.

5. The vertices of parallelogram ABCD are $A(2,4), B(0,0), C(6,2)$, and $D(8,6)$. Find the coordinates of the intersection of the diagonals.


Name: $\qquad$
Chapter 13 Review

1. The coordinates of the midpoint of segment $A B$ are $(-7,6)$. If the coordinates of point $A$ are $(2,-4)$ and the coordinates of $B$ are $(-16$, $y)$, what is the value of $y$ ?
2. The coordinates of $A$ and $B$ are $(2 a, 4 b)$ and $(8 a, 6 b)$, respectively. Express in terms of $a$ and $b$, the coordinates of the midpoint of segment $A B$.
3. Write an equation of the line that passes through points $(2,3)$ and $(4,5)$.
4. What is the length of the line segments joining points $J(1,5)$ and $K(3,9)$ in simplest radical form.
5. Find the slope of the lines $6 x+3 y=10$ and $y=-2 x+5$. What can you conclude about these lines?
6. Give an equation of the perpendicular bisector of the segment joining $(5,1)$ and $(-3,7)$.
7. Refer to the points $A(6,-6), B(2,1), C(-6,2)$ and $D(-2,-5)$. Use slopes to show that $\overline{A C} \perp \overline{B D}$.
8. Find the center and radius of the circle with equation

$$
(x-4)^{2}+(y+7)^{2}=\frac{1}{25} .
$$

9. Write the equation of a circle whose center is $(-2,0)$ and has a radius of $\sqrt{11}$.
10. Sketch the graph of $(x-3)^{2}+(y+2)^{2}=36$.
11. Show that triangle with vertices $A(-3,4), M(3,1)$ and $Y(0,-2)$ is isosceles.
12. Write the equation of a circle that has center $(-2,-4)$ and passes through the point $(3,8)$.
13. Given $\triangle S T R$ is an isosceles triangle with $T S=T R, S(2 a, 2 b)$ and $T(0,0)$.
a. Find the coordinates of $R$.
b. Find the coordinates of the midsegment parallel to $\overline{T R}$.
14. Quadrilateral MNOP has coordinates $M(-3,1), N(1,-2), O(-2,-6)$ and $P(-6,-3)$. Show the diagonals::
a. are congruent.
b. are perpendicular.
c. have the same midpoint.
d. Give the best name for MNOP
15. Quadrilateral QRST has vertices $Q(-2,3), R(1,5), S(5,-1)$ and $T(2,-3)$.
a. Show QRST is a parallelogram.
b. Determine what "special" kind of parallelogram is QRST? Justify your answer.
16. Quadrilateral $W X Y Z$ has vertices $W(a, 0), X(0,0), Y(b, c)$ and $Z(a-b, c)$. Show that $W X Y Z$ is an isosceles trapezoid.
17. Quadrilateral LMNO has vertices $L(-6,1), M(1,1), N(1,8)$ and $O(-6,8)$.
a. Show the diagonals bisect each other.
b. Give the best name for LMNO $\qquad$
