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Chapter 6A - Exponential and Logarithmic Equations

Exponential Equations

In previous chapters we learned about the exponential and logarithmic functions, studied some of their
properties, and learned some of their applications. In this chapter we show how to solve some simple
equations which contain the unknown either as an exponent (exponential equation) or as the argument
of a logarithmic function.

As a general rule of thumb, to solve an exponential equation proceed as
follows:

1. Isolate the expression containing the exponent on one side of the equation.
2. Take the logarithm of both sides to ”bring down the exponent”.
3. Solve for the variable.

Example 1: Solve 3x  25
Solution:

3x  25 take the natural log of both sides
x ln3  ln25 solve for x

x  ln25
ln3

≈ 2. 929947

Example 2: Solve 4  3x1  8
Solution:

4  3x1  8 isolate x
3x1  4 take the natural log of both sides
x  1 ln3  ln4 solve for x

x  ln4
ln3 − 1

≈ . 2618595

Example 3: Solve the equation 10
1  e−x  2

Solution We need to “isolate” the terms involving x on one side of the equation. We can do this by
cross multilpying and then solving for e−x:

1  e−x  5
e−x  4
− x  ln4

x  − ln4 ≈ −1. 386294
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Example 4: Solve the equation x22x − 2x  0.

Solution: This looks slightly difficult. However, let’s factor the 2x term out of the left hand side.
x22x − 2x  0

2xx2 − 1  0

Since a product can equal zero if and only if one of the factors is zero, we know that if x is a solution,
then either 2x  0 or x2 − 1  0. But 2x is never 0, thus, our solution must satisfy

x2 − 1  0
x2  1
x  1

Example 5: Solve the equation e2x − 3ex  2  0.

Solution: This equation really looks hard, and it is until we notice that it is a quadratic equation
in ex. To see that this is the case, set u  ex, then the equation e2x − 3ex  2  0 can be written as
u2 − 3u  2. Solving this latter equation we have

ex2 − 3ex  2  0
u2 − 3u  2  0

u − 1u − 2  0
Thus, we have u  1 or u  2. In terms of ex, this means

ex  1 or ex  2
x  ln1 x  ln2
x  0 x ≈ . 6931472
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Logarithmic Equations

In the previous page we showed how to solve some exponential equations. Here we solve some
logarithmic equations.

To solve a logarithmic equation proceed as follows
1. Isolate the expression containing the logarithm on one side of

the equation.
2. Exponeniate both sides to remove the log function.
3. Solve for the variable.

Example 1: Solve logx  35 for x.

Solution: The main item we need to note here is that log represents the logarithm of a number to
base 10. Thus, we need to raise both sides of the equation to the 10th power.

logx  35
x  10logx  1035

Example 2: Solve lnx − 3  5 for x.

Solution: For this equation the logarithm used is the natural log. That is, to the base e ≈
2.718282.

lnx − 3  5
x − 3  e5

x  e5  3
≈ 151. 4132

Example 3: Solve 6 − log53x − 2  4 for x.

Solution:
6 − log53x − 2  4

log53x − 2  6 − 4
3x − 2  52

3x  25  2

x  27
3  9
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Example 4: Solve the equation log23  log2x  log25  log2x − 2

Solution: The first thing to do is to use the algebraic properties of log functions to try to simplify
this equation.

log23  log2x  log25  log2x − 2
log23x  log25x − 2 now raise both sides to the power 2.

3x  5x − 2  5x − 10
2x  10
x  5

Example 5: Solve logx  logx − 1  log4x.

Solution: Here as in Example 4, we first simplify this equation by using some of the logarithm’s
properties.

logx  logx − 1  log4x
logxx − 1  log4x

xx − 1  4x
x2 − 5x  0

xx − 5  0
The solutions to this last equation are x  0 and x  5. However, we need to be sure that they are
solutions to the original logarithmic equation. There is no problem with the solution x  5, but x  0 is
not a valid solution as the term log0 is not defined.
Hence the only solution to the equation logx  logx − 1  log4x is x  5.
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Exercises for Chapter 6A - Exponential and Logarithmic
Equations

For problems 1-16, Solve the equation for x.
1. 3x  14
2. 5ex  22
3. 7103x−1  5
4. 2e3x−5  7
5. 15

1  e−2x1  4

6. 2001.023t  1000
7. x2ex  5xex − 6ex  0
8. ln4x − 5  0
9. 3 − log2x − 1  0
10. logx2 − 3x  1
11. log32x  3  4
12. log3x  log3x  6  3
13. 1  log3x − 1  log2x  1
14. log2x2 − x − 2  2
15. lnlnx  3
16. log3x − 10  2  logx − 2
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Answers to Exercises for Chapter 6A - Exponential and
Logarithmic Equations

1.
3x  14
x  log314
≈ 2. 402174

2.
5ex  22

x  ln 22
5

≈ 1. 481605

3.
103x−1  5

7
3x − 1 ln10  ln 5

7

3x − 1 
ln 5

7 
ln10

3x 
ln 5

7 
ln10  1

x  1
3

ln 5
7 

ln10  1

≈ 0. 284624

4.
2e3x−5  7

x  5
3  1

3 ln 7
2

≈ 2. 084254

5.
15

1  e−2x1  4

4  4e−2x1  15

e−2x1  11
4

− 2x  1  ln 11
4

x  −12 ln 11
4 − 1

≈ −0.005800

6.
2001.023t  1000

t ≈ 27. 09132

7. The given equation x2ex  5xex − 6ex  0 imples that the following equation is valid.
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(Divide by ex which is never 0.)

x2  5x − 6  0 .

The roots of this last equation are x  −6 and x  1.
8.

ln4x − 5  0
4x − 5  1

x  3
2

9.
3 − log2x − 1  0

log2x − 1  3
x − 1  23

x  9

10.
logx2 − 3x  1

x2 − 3x  101

x2 − 3x − 10  0
This last equation has solutions x  5 and x  −2. Both of which are solutions to the
original equation.

11.
log32x  3  4

2x  3  34

2x  78
x  39

12.
log3x  log3x  6  3

log3xx  6  3
xx  6  33

x2  6x − 27  0
x  9x − 3  0

Solutions to last equation are x  −9 and x  3. However, x  −9 is not a solution to the
original equation since it is not in the domain. Thus, x  3 is the only solution to the
original equation.

13.
1  log3x − 1  log2x  1

log 2x  1
3x − 1  1

2x  1
3x − 1  10

The last equation has x  11
28 as a solution. 11

28 is also a solution to the original equation.
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14.
log2x2 − x − 2  2

x2 − x − 2  4
x2 − x − 6  0

Solutions to the last equation are x  3 and x  −2. Both of them also solve the original
equation.

15.
lnlnx  3

lnx  e3

x  ee3 

16.
log3x − 10  2  logx − 2

log 3x − 10
x − 2  2

3x − 10
x − 2  100

The solution to the last equation is x  190
97 . However, it is not a solution to the original

equation since it is not in the domain.
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Chapter 6B - Applications of Exponentials and Logarithms

Exponential Functions and Population Models

There are many species of plants and animals whose populations follow an exponential growth law. We
will look at several examples of such behavior in this section.

A population of some species satisfies an exponential growth law if there are numbers a and
k such that if Pt equals the population of the species at t, then

Pt  P0akt ,
where P0 represents the population at time t  0.

Note: in practice the separate values of a and k are not important. What is crucial is ak, for if we know
this number, then we can compute Pt. Since we can write a  e lna every exponential growth law can
also be expressed in terms of the natural exponential function. That is,

Pt  P0akt  P0ekt lna .

Example 1: If Pt  6  52t, then Pt satisfies an exponential growth law. What is P0. Find a
value of t such that Pt  150.
Solution: To find out what P0 equals we set t  0 in the expression for Pt.

P0  6  50  6  1  6 .
The last part of the example is to find a value of t for which Pt  150.

150  Pt  6  52t 
150
6  25  52t 

25  52 t  25 t a solution to this equation is
t  1

Example 2: Suppose that a bacterial colony on a petri dish doubles its population every 3 hours.
Show that the number of bacteria satisfies an exponential growth law.
Solution: Let Pt represent the number of bacteria present at time t in hours. The statement that
the number of bacteria doubles every 3 hours can be written as Pt  3  2Pt. The formulas below
are constructed using this equation.

P3  2P0
P6  P3  3  2P3  22P0  22P0
P9  P6  3  2P6  222P0  23P0 Do you see a relationship

P12  P9  3  2P9  223P0  24P0 between the argument of P
P15  P12  3  2P12  224P0  25P0 and the exponent of 2?

There is a relationship between the argument of Pt and the exponent of 2. If t is the argument of P,
then the exponent of 2 is t/3. We conjecture the following formula.

Pt  P02 t/3 .
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Let’s verify that this function satisfies the condition that every three hours it’s size doubles:

Pt  3  P02t3/3  P02 t/31  P02 t/32  2P02 t/3   2Pt

Thus, we have found constants a and k such that Pt  P0akt, where a  2 and k  1/3. Hence the
bacterial population satisfies an exponential growth law.

Question: Which of the following functions satisfy an exponential growth law? (Hint: more than
one of these functions satisfies an exponential growth law.)

a) 2t3

b) 2t2 − 5
t  1

c) 2−t

d) 3
5 t

e) 15565t

Answer:

a) This function does not satisfy an exponential growth law.
b) Not an exponential growth law.
c) This is an exponential growth law. P0  1, a  2, and k  −1.
d) This is an exponential growth law. P0  3, a  5, and k  −1
e) This is an exponential growth law. P0  15, a  56, and k  5.

Question: Express 5 ∗ 4kt in terms of the natural exponential function.
Answer:

5 ∗ 4kt  5 ∗ e ln4kt

≈ 5 ∗ e1.39kt

 5 ∗ e1.39kt

Example 3: Let Pt  35  23t. What do P0, P1, and P3 equal ?

Solution: To answer these questions we only need to evaluate the function Pt at the specified
values of t.

P0  35  20  35
P1  35  21  70
P3  35  233  35  29  35  512  17, 920
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Example 4: Suppose Pt satisfies an exponential growth law. If P2
P1  5, what must ak equal ?

If P0  6, determine P4.

Solution: Since Pt  P0akt, we know that P2
P1 

P0a2k

P0ak  ak. Since we are told this

ratio equals 5, we have ak  5 . To calculate P4 we have
P4  P0a4k

 6ak4

 654

 3750

Example 5: A biologist counts the number of bacteria in a petri dish every 3 hours. The table below
gives the data she found. Assuming the population of the bacteria satisfies an exponential growth law,
use the data to determine the precise law. That is find a, k, and P0. Hint: it is only necessay to
determine ak. The values of a and k by themselves are not needed to compute Pt.

t 0 3 6 9 12
Pt 6.7 8.92 11.87 15.79 21.03

The population Pt is in hundreds. Thus, 6.7 represents 670 bacteria.

Solution: P0 can be read right from the table. P0  6.7. Since we are assuming that the
population of the bacteria satisfies an exponential growth law we are assuming that
Pt  6.7akt  6.7ak t. If we look at the ratios of the tabulated data we have the following.

8.92
6.7 

P3
P0 

6.7ak3

6.7  ak3

Thus, we should have ak3  8.92
6.7 ≈ 1. 3313433, or ak ≈ 1. 33134331/3 ≈ 1. 1000946. Let’s look

at some of the other ratios.

ak3 
P6
P3  11.87

8.92 ≈ 1. 3307175 

ak ≈ 1. 33071751/3 ≈ 1. 0999222

This is pretty good agreement with the first estimate of ak. For one last comparison let’s look at the
ratio of P12

P3 .

21.03
8.92 

P12
P3 

ak12

ak3  ak9
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Thus, we should have ak ≈ 21.03
8.92

1/9
≈ 1. 0999832. Still in very good agreement with our first

two calculations. Thus, to one decimal place we estimate that ak  1.1.

Question: If we use the ratios P9
P3 , what would we get for an estimate of ak?

Answer: P9
P3 

P0ak9

P0ak3  ak6. From the table we have P9
P3  15.79

8.92 ≈ 1. 7701794.

Thus,

ak ≈ 1. 77017941/6

≈ 1. 099857

Example 6: A biologist decides that an epidemic spreads through a population of a city according
to the following model pt  1 − e−0.34t, where pt represents that fraction of the city’s population
which has come down with the disease, and t is in weeks. How long will it take for 90% of the city to
become infected?

Solution: Notice that p0  0. That is, at the beginning of the epidemic no one in the city has the
disease. Note too, that as time progressess a larger and larger fraction of the city becomes infected. In
fact the value of pt gets closer and closer to 1 as t gets larger and larger. The equation we need to
solve is

. 9  1 − e−0.3t

e−0.3t  1 − 0.9  0.1
− 0.3t  ln0.1

t  ln0.1
−0.3

≈ 7. 67528

It seems that this is a disease which spreads very rapidly. After 8 weeks over 90% of the population is
infected.
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Exponential Functions and Radioactive Decay

There are many material substances which decay radioactively. That is, they spontaneously change into
a different material, and in the decay process emit charged particles. Some naturally occurring isotopes
which decay are carbon 14, 14C, uranium 234, 234U, and mercury 196, 196Hg. Associated with any
radioactive substance is a period of time called its half-life. The half-life of a substance is how long it
takes for half of the substance to decay.

Thus, if the half life of a substance is 2 years, and we start out with one pound of the material, then after
2 years we’ll have 1/2 pound left, and after 4 years we’ll have 1/2 of 1/2 or 1/4 of a pound left, etc.
The table below lists some radioactive elements, their chemical symbol, and their half-life.

Element carbon 14 platinum 192 radium 226 tungston 183 uranium 235
Symbol 14C 192Pt 226Ra 183W 235U

Half-life(years) 5.8  103 105 1,622 1017 7.1  108

If an element decays radioactively, then the amount of this element at any time t satisfies an exponential
growth/decay law. That is, if At denotes the amount of material at time t, then

At  A0ekt .

The difference between exponential functions used to model interest earned, population growth, and
radioactive decay is that, in the first two, the term ek is larger than 1 while in a decay situation the
term ek is less than 1.

Example 1: Using the fact that the half-life of carbon 14 is 5800 years, determine the exponential
growth/decay law which 14C satisfies.

Solution: Let A0 denote the amount of 14C present at t  0. Let t2 denote the half-life. Then we
have At2  1

2 A0. Using the formula At  A0ekt, we have
1
2 A0  At2  A0ek∗t2 divide by A0

1
2  ek∗t2 take the natural log of both sides

− ln2  t2 ∗ k

k  − ln2
t2

So, for an element with a half life of t2 years, its exponential growth law is At  A0e−t ln2/t2 .
Thus, since t2  5800 for 14C, this radioactive element satisfies the law At  A0e−t ln2/5800.

Question: If the half life of a substance is 5 years, how many years will it take for 2 pounds of this
substance to decay to 1

8 of a pound? Hint: you do not need to determine the exponential decay law.

Answer: 20 years is correct. After 5 years, 1 pound is left. After 10 years, 1/2 pound is left. After
15 years, 1/4 pound is left. After 20 years, 1/8 pound left.
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Example 2: The half life of uranium 235 is 7.1  108 years. If we start out with 1.5 kilograms of
235U in 1999, how much uranium will be left after 10,000 years?

Solution: We saw on the preceding page that the exponential growth/decay law is
At  A0e−t ln2/t2 ,

where t2 is the half-life. Thus, for 1.5 kilogram of 235U we have
At  1.5e−t ln2/7.1∗108  .

So after 10,000 years we will have
A10,000  1.5e−10000 ln2/7.1∗108 

≈ 1. 499 kilograms.
Not much 235U has decayed after 10,000 years.

Example 3: Suppose a radioactive substance satisfies the exponential growth/decay law
At  A04−t, where t is in centuries. What is the half-life of this substance?

Solution: We want to find that value of t for which At  1
2 A0. That is,

1
2 A0  A04−t 

1
2  4−t

To solve this equation we take the natural log of both sides.
1
2  4−t

− ln2  −t ln4

t  − ln2
− ln4  ln2

2 ln2  1
2

Thus, the half-life of this substance equals 1
2 century or 50 years.

Example 4: A physicist compiles the following table of data for the decay of a radioactive material.
Assuming the material satisfies an exponential decay law, find an exponential function which models
the data.

time in months amount of material in ounces

4 15. 3726
8 14. 7699
12 14. 1907

Solution: The function we use to model this data has the form ft  cakt, where c, a, and k are
constants to be determined. However, we can essentially ignore what the base is, because we
now realize that we can use the natural exponential function to model any form of exponential growth.
That is, we look for a function of the form ft  cekt, where c and k have to be determined. The first
two rows in the above table lead to the following equations

15.3726  ce4k

14.7699  ce8k .
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Taking the natural log of both sides of each equation we have
ln15.3726  lnc  4k
ln14.7699  lnc  8k

Subtracting the second equation from the first we get
ln15.5726 − ln14.7699  lnc  4k − lnc  8k

ln 15.3726
14.7699  −4k

k 
ln 15.3726

14.7699
−4

k ≈ −9. 99884  10−3

We now take this value for k and substitute into the first equation and then solve for c.
ln15.3726  lnc  4−9. 99884  10−3

lnc  ln15.3726 − 4−9. 99884  10−3
lnc ≈ 2. 77258 now exponentiate both sides

c ≈ e2.77258 ≈ 15. 9999
Thus, the exponential function which models the given data equals

ft ≈ 16e−0.001t ,
where we have rounded off the values of c and k.
Remember that t has units of months and ft has units of ounces.

Example 5: What is the half-life of this material.

Solution: We are looking for a value of t for which ft  1
2 f0. This leads to the equation.

16e−0.001t  ft  1
2 f0  1

2 16  8

e−0.001t  8
16  1

2 take the natural log of both sides

− 0.001t  ln0.5

t  ln0.5
−0.001  693. 147

Thus, the half-life of this material is approximately 693 months or a little less than 58 years.

© : Pre-Calculus



© : Pre-Calculus - Chapter 6B

Exercises for Chapter 6B - Applications of Exponentials

and Logarithms

1. A certain strain of bacteria satisfies the exponential growth law Pt  15  4 t, where t is in
hours. Calculate the number of bacteria at 1 hour intervals for the first 6 hours.

2. A chemist and a biologist want to test if a certain chemical is effective in controlling a
particular bacteria. A specific colony of this bacteria satisfies the exponential growth law
Pt  1004.5 t, where t is in hours. At time t  0 the two scientists expose the colony to
the chemical which they hope will control the bacteria. The biologist, at hourly intervals,
counts the number of bacteria. Her data is tabulated below. Do you think the chemical was
effective in controlling the bacteria?

t 0 1 2 3 4 5 6
count 102 300 990 2150 4080 8450 16,375

3. An anthropologist while studying a European region is able to determine the population of
this region at various times. In so doing he believes that this the population of this region
satisfies the exponential growth law Pt  500e0.002t, where t  0 corresponds to 2500 BC.
What does this model predict the population of the region will be in the year 2000?

4. Let pt  200ekt represent the number of bacteria in a petri dish after t days. Suppose the
number of bacteria doubles every 5 days. What must k equal ?

5. A epidemiologist while studying the progession of a flu epidemic decides that the function
pt  3

4 1 − e−kt, k  0, will be a good model for the fraction of the earth’s population

which will contract the flu. t is in months. If after 2 months 1
1000 of the earth’s population

has the flu, what is the what is the value of k?

6. The half-life of tungston is 1017 years. How long will it take for 10 grams of tungston to
decay to 5 grams, and 2.5 grams?

7. The half-life of tungston is 1017 years. If there is currently a total of 1010 pounds of
tungston, how much tungston will be left 50,000 years from now?

8. After 5 years 10 pounds of a radioactive material has decayed to 2.5 pounds. What is the
half-life of this radioactive material ?

9. Refering to the material in the previous problem, how much of the original 10 pounds will
be left after 50 years?

10. If a radiactive material satisfies the decay law At  15 1
2

4t
, what is the half-life of this

material, and how much will be left in 200 years?
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11. Radium 226 has a half-life of 1,622 years. Radium is mainly used for medical treatments.
Suppose a medical center buys 1/4 pound of 226Ra for $5000. What is the dollar value of the
radium after 100 years?

12. If fx  16e−3x, find x such that fx  8. If fx represented a radioactive material, then the
value of x we are seeking would be called the half-life of the material.

13. Find the value of k such that if ft  cekt represents the amount of radioactive material of a
substance after t years, then this substance has a half-life of 1500 years.

14. The number of bacteria present in a culture Nt at time t hours is given by 30002 t.
a) What is the initial population? b) How many bacteria are present in 24 hours?
c) How long will it take the population to triple in size?

15. The mass mt remaining after t days from a 40 − g sample of thorium-234 is given by
mt  40e−0.0277t.
a) How much of the sample remains after 60 days?
b) After how long will only 10 g of the sample remain?
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Answers to Exercises for Chapter 6B - Applications of

Exponentials and Logarithms

1. P1  60 P2  240 P3  960 P4  3840 P5  15360 P6  61440. Thus, after 1
hour there are 60 bacteria. After 2 hours there are 240 bacteria. After 3 hours there are 960
bacteria. After 4 hours there are 3840 bacteria. After 5 hours there are 15360 bacteria.
After 6 hours there are 61440 bacteria.

2. Before answering the question as to the efficacy of the chemical, we should see what the
exponential model predicts. P0  100, P1  450.0, P2  2025.0, P3  9112. 5,
P4  41006. 25, P5  184528. 13. After comparing these numbers to the actual
numbers, we certainly feel that the chemcal has inhibited the growth of the bacteria.
However, it does appear that the bacterial colony is still experiencing exponential growth,
although at a reduced rate. It appears to double in size every hour instead of every half-hour.
So the conclusion the scientists should draw is that the chemical slows down the growth of
the colony, but the bacteria still grow exponentially.

3. The year 2000 corresponds to t  4500. The model predicts that the population of the region
will be

P4500 ≈ 4,051,542 .

4. We are to find k such that p5  2p0. The equation which this lead to is
p5  200e5k  2p0

 2  200
e5k  2
5k  ln2

k  ln2
5

≈ 0 . 138629

5. The data p2  1
1000 means that

3
4 1 − e−2k  1

1000
1 − e−2k  4

3000
e−2k  2996

3000
− 2k  ln 2996

3000
k  −12 ln 2996

3000
≈ 6. 671  10−4

6. It will take 1017 years for the 10 grams to decay to 5 grams, and it will take another 1017

years or a total of 2  1017 years for it to decay to 2.5 grams.
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7. If At represents the amount of tungston t years from now, then we know that

At  1010 1
2

t/1017

Thus, 50,000 years from now there will be

A50,000  1010 1
2

50000/1017

≈ 10100. 999999999999653
≈ 9,999,999,999. 99653 pounds.

8. The amount of material has decayed to 1/4 of the original amount. So this means 2 half-lives
have passed. Thus, 2th  5 or

th  5
2  2.5 years.

9. At  10 1
2

t/th
. Thus,

A50  10 1
2

50/2.5

≈ 10 1
2

20.0

≈ 9. 54  10−6 pounds.

10. From At  15 1
2

4t
have that

t
th

 4t .

Solving for th, we get
th  1

4 .

After 200 years

A200  15 1
2

800

≈ 2. 3  10−240

pounds will be left.

11. The value of the radium is $20,000 per pound, since 1/4 pound cost $5,000. To determine
the dollar value of the radium after 100 years we need to first compute how much radium
will be left after 100 years.

A100  1/4 1
2

100/1622

≈ . 239542 pounds.
Thus, the dollar value of the radium will be

20000. 239542 ≈ $4790. 84
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12. From fx  16e−3x, we get the equation
8  16e−3x divide by 16

e−3x  1
2 take logs

− 3x  ln−1/2

x  ln2
3

≈ 0 . 231049

13. We want to find a value of k such that f1500  1
2 f0. This leads to the equations

ce1500k  1
2 c

e1500k  1
2

1500k  ln1/2  − ln2

k  − ln2
1500

≈ −4. 62098  10−4

14.
a. 3000
b. N24  3000224 ≈ 5. 033165  1010

c. The equation we need to solve is
3 ∗ 3000  Nt  30002 t

or
2 t  3

t ln2  ln3

t  ln3
ln2

≈ 1. 584963 hours

15.
a. m60 ≈ 7. 590 grams
b. We need to solve the equation

10  mt
This leads to the equation

10  40e−0.0277t

e0.0277t  4
0.0277t  ln4

t  ln4
0.0277

≈ 50. 04672 days
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