Combining and Describing Functions

Functions

1. Inverse Functions

You already know that exponential functions and logarithmic functions are inverses of one another. Now, let's see what is implied by the term "inverse".

Given $f(x)=2 e^{3 x}+1$
(a) Find the inverse, $f^{-1}(x)$.
(b) Now fill in the table below for $f(x)$ and $f^{-1}(x)$.

\boldsymbol{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\boldsymbol{f}(\boldsymbol{x})$					
$\boldsymbol{f}^{\mathbf{1}}(\boldsymbol{x})$					

Is there a specific pair of points that stand out to you?

Combining and Describing Functions

(c) Sketch the graph of both $f(x)$ and $f^{-1}(x)$ on the same axes below.

(d) How do the graphs compare to one another?
(e) For $f(x)$, give the domain, range, and the equation (and type) of the asymptote.
D:
R:
A:
(f) For $f^{-1}(x)$, give the domain, range, and the equation (and type) of the asymptote.
D:
R:
A:

Now, let's look at an anonymous function represented by a table of values.

\boldsymbol{x}	0	1	2	3	4
$\boldsymbol{f}(\boldsymbol{x})$	0	1	1	5	3

Combining and Describing Functions

(a) Using the table below, give a table of values for the inverse of the above function.

\boldsymbol{x}					
$\boldsymbol{f}^{-\mathbf{1}}(\boldsymbol{x})$					

(b) Is the inverse a function? How can you tell?

One-to-one functions are functions that have an inverse that is also a function. You can tell graphically if a function is one-to-one without graphing the inverse - it must pass the horizontal line test.

Consider the following functions:

(a) Is either function one-to-one?
(b) Draw the inverse function on each graph.

Combining and Describing Functions

Find the inverse of the following and give their domain.

1. $g(x)=\frac{3}{x-1}$
2. $f(x)=x^{2}-1$
3. $f(x)=\sqrt[3]{\frac{x-7}{3}}$

$$
\text { 4. } h(x)=\log _{3}\left(x^{2}+2\right)
$$

We'll revisit inverse functions in a moment.

Combining and Describing Functions

2. Combining and Compositions

I. Basic Combinations and Compositions

For $1-8$ below, use the following information. Give the domain of each.

$$
f(x)=-2 x^{2}-2 x+1 \text { and } g(x)=x+1
$$

1. Find $f(x)+g(x)$
2. Find $f(x)-g(x)$
3. Find $f(x) \cdot g(x)$
4. Find $\frac{f(x)}{g(x)}$
5. Find $f(g(x))$
6. Find $g(f(x))$
7. Find $g(g(x))$
8. Find $f(g(-1))$

Combining and Describing Functions

II. Function Compositions Using Sets of Points

$\mathrm{f}=\{(-2,3),(-1,1),(0,0),(1,-1),(2,-3)\}$
$\mathrm{g}=\{(-3,1),(-1,-2),(0,2),(2,2),(3,1)\}$
Using the information above, find the following:

1. $\mathrm{f}(1)$
2. $g(-1)$
3. $g(f(1))$
4. $\mathrm{f}(\mathrm{g}(0))$
5. $\mathrm{f}(\mathrm{g}(-1))$
6. $g(f(-1))$

Given two functions, $f(x)$ and $g(x)$, evaluate the following given that:
For $f(x): f(-2)=5, f(-1)=2, f(0)=-1, f(1)=-3, f(2)=3$
For $g(x): g(-2)=-1, g(-1)=-2, g(0)=0, g(1)=2, g(2)=3$

1. $(f+f)(0)$
2. $(f-g)(-2)$
3. $f(g(-1))$
4. $g(f(0))$
5. $f(g(1))-g(f(-1))$
6. $f^{-1}(f(2))$

Combining and Describing Functions

III. Function Compositions Using Graphs

Given $f(x)$ and $g(x)$ as shown in the graphs above, find the following:

1. $f(g(1))$
2. $g(f(-2))$
3. $f(f(0))$
4. $f^{-1}(g(2))$
5. $g\left(f^{-1}(2)\right)$
6. $g^{-1}\left(g^{-1}(1)\right)$

Use the graph to the left for the following:

1. $(f+f)(2)$
2. $f(g(1))$

3. $g(f(-1))$
4. $f^{-1}\left(f^{-1}(1)\right)$
5. $(f+g)(3)$
6. $f(4)-g(-1)$
7. $(f-g)(-3)+f(f(2))$

Combining and Describing Functions

IV. Composition Extensions and Applications

1. Show that $f(x)=2 x^{2}-1$ and $g(x)=\sqrt{\frac{x+1}{2}}$ are inverse functions using compositions.
2. Verify that $f(x)=\sqrt{\frac{x-2}{3}}$ and $g(x)=3 x^{2}+2$ are inverses.
3. Given $f(x)=\sqrt{x}$ and $g(x)=x-2$, find the domains of $f(g(x))$ and $g(f(x))$.
4. Given $h(x)=(x+1)^{2}+2(x+1)-3$, determine two functions $f(x)$ and $g(x)$ which, when composed, generate $h(x)$.
5. Given $h(x)=\sqrt{4 x+1}$, determine two functions $f(x)$ and $g(x)$ which, when composed, generate $h(x)$.

Combining and Describing Functions

6. Given $h(x)=\frac{(3 x-1)^{2}}{5}$, determine two functions $f(x)$ and $g(x)$ which, when composed, generate $h(x)$.
7. You work forty hours a week at a furniture store. You receive a $\$ 220$ weekly salary, plus a 3% commission on sales over $\$ 5000$. Assume that you sell enough this week to get the commission. Given the functions $f(x)=0.03 x$ and $g(x)=x-5000$, which composed function, $f(g(x))$ or $g(f(x))$, represents your commission?
8. You make a purchase at a local hardware store, but what you've bought is too big to take home in your car. For a small fee, you arrange to have the hardware store deliver your purchase for you. You pay for your purchase, plus the sales taxes, plus the fee. The taxes are 7.5% and the fee is $\$ 20$.
(a) Write a function $t(x)$ for the total, after taxes, on purchase amount x. Write another function $f(x)$ for the total, including the delivery fee, on purchase amount x.
(b) Calculate and interpret $f(t(x))$ and $t(f(x))$. Which results in a lower cost to you?
(c) Suppose taxes, by law, are not to be charged on delivery fees. Which composite function must then be used?

Combining and Describing Functions

3. Describing Functions

Given the following graph of $f(x) \ldots$

Complete the table below.

x	$f(x)$	$f(x)+2$	$f(x)-1$	$-f(x)$	$2 f(x)$	$-\frac{1}{2} f(x)$	$f(x) \mid$
-2							
0							
4							
8							
13							
17							
19							

- How can you tell that $f(x)$ is a function? Explain.
- What is the domain and range of $f(x)$?
- Is $f(x)$ a continuous function? How can you tell?
- What is the end behavior of $f(x)$?
- Give the intervals of increase and decrease and local maximums and minimums for $f(x)$.
- What is $f(2 x)$ if $x=4$?

