2.1 Angle Relationships in Parallel Lines

Vocabulary		
Parallel lines	Skew lines	
Perpendicular lines	Transversal	

1

2. 3. 1. 4. 5 6. Identify all pairs of the following angles. 5. Identify the relationship between each pair of angles, if any. b. Alternate interior angles c. Consecutive interior angles 5 6 d. Alternate exterior angles 1) $\angle 1$ and $\angle 7$ 4) $\angle 3$ and $\angle 8$ e. Vertical Angles a. Corresponding angles 2) $\angle 4$ and $\angle 6$ 5) $\angle 3$ and $\angle 5$ f. Linear Pairs 3) $\angle 8$ and $\angle 7$ 6) $\angle 2$ and $\angle 4$

Example 2: Classify the pair of numbered angles.

WHEN LINES ARE PARALLEL! (Magic happens ... HARRY POTTER!)

If two <u>parallel</u> lines are cut by a transversal, then pairs of corresponding angles a	2/	b b	Statements 1. $a \parallel b$ 2. $\angle ___ \cong \angle ___$	Reasons 1. 2.
Alternate Interior Angles If two <u>parallel</u> lines are cut by a transversal, then pairs of alternate interior angles are 	Theorem	\rightarrow a b b	$ Statements 1. a \parallel b 2. \angle _ \cong \angle _ _ $	Reasons 1. 2.
Alternate Exterior Angles If two <u>parallel</u> lines are cut by a transversal, then pairs of alternate exterior angles are	Theorem	\rightarrow b b	Statements 1. $a \parallel b$ 2. $\angle __ \cong \angle __$	Reasons 1. 2.
Consecutive Interior Angl If two <u>parallel</u> lines are cut by a transversal, then pairs of consecutiv interior angles are		\rightarrow a b b	Statements 1. a b 2. ∠ & ∠ are su 3.	Reasons 1. upp. 2. 3.

THE HARRY POTTER SCAR!

- 1. Mark any angle with a dot
- 2. Find its vertical \angle and mark it with a dot
- 3. Copy the same dot pattern on the other parallel
- 4. Connect the dots
- If they both have a dot or are both blank (SAME) \rightarrow
- If one has a dot and the other it blank (DIFFERENT) \rightarrow _____

Example 5: If $\overline{DC} \parallel \overline{BA}$, are the angles congruent or supplementary?

, are the angles songe	court of coppionioning. J.		
1. $\angle DHG$ and $\angle HGA$	2. $\angle FHC$ and $\angle DHG$	2. $\angle BGE$ and $\angle FHC$	
3. $\angle EGA$ and $\angle GHC$	4. $\angle AGH$ and $\angle EGA$	5. $\angle DHG$ and $\angle BGH$	

Example 6: Solve for x and explain your reasoning.

2.2 Converses

Vocabulary

Conditional Statement

Ex: "If you have visited the statue of Liberty, then you have been to New York."

Converse

Ex:

Example 1: Write the converse of the given statement.

1. If an animal has wings, then it can fly.

2. If you are student, then you have a student I.D. card.

3. All sharks have a boneless skeleton.

4. All police officers eat donuts.

Example 2: (a) Write the converse of the true statement. (b)Then decide whether the converse is true or false. If false, provide a counterexample.

1. If an animal is an owl, then it is also a bird.	2. If two lines form right angles, then they are perpendicular.
3. If an angle measures 130°, then it is obtuse.	4. If two angles are adjacent, then they are congruent.

Checkpoint

1. Find a counterexample to the statement below.
If two angles are supplementary, then they are formed by two parallel lines cut by a transversal.
a. b. c. d. 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2. Write the converse of the statement below. Then determine whether each statement is true or false. If false, give a counterexample.
Conditional Statement: If two angles are right angles, then they are congruent. T or F
Converse: T or F

2.3 Parallel & Perpendicular Lines

Example 1: Solve for x and explain your reasoning.

MORE PROOFS

1. Given: $m \parallel n$; $m \angle 1 = (9x + 13)^{\circ}$; Statements Reasons 1. $m \parallel n; m \perp 1 = (9x + 13)^{\circ}; m \perp 2 = (11x - 3)^{\circ}$ 1. $m \angle 2 = (11x - 3)^{\circ}$ Prove: x = 82. Given: $m \parallel n$; $m \angle 3 = (20x - 3)^{\circ}$; Statements Reasons 1. $m \parallel n; m \angle 3 = (20x - 3)^{\circ}; m \angle 4 = (9x + 9)^{\circ}$ 1. $m \angle 4 = (9x + 9)^{\circ}$ Prove: $m \angle 4 = 63^{\circ}$ 3. Given: $\overline{AB} \parallel \overline{CD}$; $m \angle BGE =$ Statements Reasons 1. $\overline{AB} \parallel \overline{CD}$; $m \angle BGE = (7x - 6)^{\circ}$; $m \angle CHF = (5x + 18)^{\circ}$ 1. $(7x - 6)^{\circ};$ $m \angle CHF = (5x + 18)^{\circ}$ Prove: $m \angle CHF = 78^{\circ}$ Ε B Statements Reasons 4. Given: $m \parallel n, r \parallel s$; 1. $m \parallel n, r \parallel s, m \angle 1 = 130^{\circ}$ 1. $m \angle 1 = 130^{\circ}$ Prove: $m \angle 3 = 50^{\circ}$

PERPENDICULAR LINES

Two lines that form four

m

 So if two adjacent angles are formed by ⊥ lines, then they

are_____

Example 2: Perpendicular Lines

LET"S KEEP PRACTICING THOSE ANGLE NAMES!

Name the angle pair. Then state if	they are congruent or supplementary.	
$\overline{EF} \parallel \overline{GH}$	a. $\angle EKL$ and $\angle GLJ$	e. $\angle JLH$ and $\angle ILG$
	b. $\angle IKF$ and $\angle GLJ$ c. $\angle JKF$ and $\angle KLH$	f. $\angle EKL$ and $\angle HLK$ g. $\angle JLH$ and $\angle JKF$
	d. $\angle ILH$ and $\angle JLH$	h. $\angle EKJ$ and $\angle GLK$

2.4 Perpendicular lines + Proofs

PERPENDICULAR LINE	5 in proof	Statements	Reasons
Given: $m \perp n$	Î ₁	1. $m \perp n$	1.
	m	2.	2.
→→	n	3.	3.
RIGHT ANGLES CONGRUENCE THEOREM			
All right angles are	a 🛓	$\frac{\text{Statements}}{1. \ a \perp b}$	Reasons 1.
	1 2	, 2.	2.
→→		3.	3.

Example 2: Using Perpendicular lines in a proof.

Statements	Reasons
1. $\overrightarrow{KA} \perp \overrightarrow{AT}$, $m \angle PAT = 20^{\circ}$	1.
2. ∠is a right angle	2.
3.	3.
4.	4. Angle Addition Postulate
5.	5.
6.	6.
Statements	Reasons
1. $\overline{AB} \perp \overline{BC}; \overline{DC} \perp \overline{BC}$	1.
	1. $\overrightarrow{KA} \perp \overrightarrow{AT}$, $m \angle PAT = 20^{\circ}$ 2. \angle is a right angle 3. 4. 5. 6. Statements

PROVING LINES PARALLEL

**REMEMBER: Magic happens only if the lines are parallel, so... You can use angle measures to PROVE lines are parallel!

Example#1: Determine whether each set of lines are parallel or not. Explain!

R ^e m ^e m/6 ^e r	
this???	

Transitive PropertyIf a = b and b =c, then _____

3. Given: $\angle 2 \cong \angle 1, \angle 1 \cong \angle 3$,	Statements	Reasons
$m \angle 5 = 64^{\circ}$ Prove: $m \angle 6 = 64^{\circ}$	1. $\angle 2 \cong \angle 1, \angle 1 \cong \angle 3, m \angle 5 = 64^{\circ}$	1.
11000. 1120 - 04		
$\sqrt{5}$ 3		
< <u>√</u> 6		
		l
×		

PERPENDICULAR TRANSVERSAL THEOREM		$m \land n$	
If $m \perp t$ and $n \perp t$, then	$\frac{\text{Statements}}{1. \ m \perp t; \ n \perp t}$	Reasons 1. given	
uicii	2.	2.	\downarrow \downarrow

Proofs

→_n

Proots		
4. Given: $s \perp g, g \perp h$,	Statement	Reason
$m \angle 1 = 72^{\circ}$ Prove: $m \angle 5 = 72^{\circ}$	$1. s \perp g, g \perp h, m \angle 1 = 72^{\circ}$	1. Given
. 2/1 _	2. <i>s</i> <i>h</i>	2.
$s \xleftarrow{2/1}{3/4} \rightarrow$	3.	3.
$h \xleftarrow{6/5}{7/8} \qquad \qquad$	4. $m \angle 5 = 72^{\circ}$	4.
5. Given: $f \perp m, f \perp n$,	Statement	Reason
$m \angle 6 = 30^{\circ}$ Prove: $m \angle 3 = 150^{\circ}$	$1. f \perp m, f \perp n, m \angle 6 = 30^{\circ}$	1.
$ \begin{array}{c} & f \\ & 3 \\ & 2 \\ & 4 \\ & m \\ & 6 \\ & 8 \\ & n \\ \end{array} $		
6. Given: $m \parallel n; m \angle 3 = 128^{\circ}$	Statement	Reason
Prove: $m \angle 5 = 52^{\circ}$	$1. m n; m \angle 3 = 128^{\circ}$	1.
4 m		

2.5 Review + Multiple Choice

EXTRA PRACTICE

2.5 Perimeter & Area

Example 2: Find the area of the figure shown.

b. Then find the area of the square.

SPIRAL REVIEW

SPIRAL REVIEW

Rotations	For every $90^{\circ} \rightarrow 1$ quadrant over Switch #'s			
	wise about the origin, ould be the coordinates	 If P(4, −3) is roclockwise about what are the coordinage? 	the origin, then	3. If <i>M</i> (5, 6) then what are the coordinates of its image after a rotation 90° clockwise about the origin?
Translation	s			
1. If $A(-4, 2)$ translates to $A'(3, -9)$, then $B(-1, -5)$ is translated to what point?			 2. If G(3, 5) translates to G'(-5, 12), then K(-4, 1) is translated to what point? 	

PRACTICE MAKES PERFECT!

1. In the figure, \overline{GH} and \overline{IJ} are intersected by \overline{KL} .	2. You are planting grass on a rectangular plot of land. You are also			
$\angle HNL$ and which of the following angles are	building a fence around the edge of the plot. The plot is 45 yards			
known as corresponding angles?	long and 30 yards wide. How much area do you need to cover			
A. $\angle JMN$	with grass s eed? How many yards of fencing do you need?			
B. $\angle JML$ G N H				
C. $\angle NMI$				
D. $\angle IML$ I I				
3. Solve for <i>x</i> and explain your reasoning.				
$(2x + 1)^{\circ}$ (x + 14)°				

