The probability that a randomly selected student will be a junior given that the student owns a car is $\frac{1}{3}$.

REVIEW EXAMPLES

1. This table shows the names of students in Mr. Leary's class who do or do not own bicycles and skateboards.

	Bicycle and Skateboard Ownership		
Owns a Bicycle	Owns a Skateboard	Owns a Bicycle AND Skateboard	Does NOT Own a Bicycle OR Skateboard
Ryan	Brett	Joe	Amy
Sarah	Juan	Mike	Gabe
Mariko	Tobi	Linda	Abi
Nina		Rose	
Dion			

Let set A be the names of students who own bicycles, and let set B be the names of students who own skateboards.
a. Find A and B. What does the set represent?
b. Find A or B. What does the set represent?
c. Find $(A \text { or } B)^{\prime}$. What does the set represent?

Solution:

a. The intersection is the set of elements that are common to both set A and set B, so A and B is \{Joe, Mike, Linda, Rose\}. This set represents the students who own both a bicycle and a skateboard.
b. The union is the set of elements that are in set A or set B or in both set A and set B. You only need to list the names in the intersection one time, so A or B is \{Ryan, Sarah, Mariko, Nina, Dion, Joe, Mike, Linda, Rose, Brett, Juan, Tobi\}. This set represents the students who own a bicycle, a skateboard, or both.
c. The complement of A or B is the set of names that are not in A or B. So, the complement of A or B is \{Amy, Gabe, Abi\}. This set represents the students who own neither a bicycle nor a skateboard.
2. In a certain town, the probability that a person plays sports is 65%. The probability that a person is between the ages of 12 and 18 is 40%. The probability that a person plays sports and is between the ages of 12 and 18 is 25%. Are the events independent? How do you know?

Solution:

Let $P(S)$ be the probability that a person plays sports.
Let $P(A)$ be the probability that a person is between the ages of 12 and 18 .
If the two events are independent, then $P(S$ and $A)=P(S) \cdot P(A)$.
Because $P(S$ and $A)$ is given as 25%, find $P(S) \cdot P(A)$ and then compare.

$$
\begin{aligned}
P(S) \cdot P(A) & =0.65 \cdot 0.4 \\
& =0.26
\end{aligned}
$$

Because $0.26 \neq 0.25$, the events are not independent.
3. A random survey was conducted to gather information about age and employment status. This table shows the data that were collected.

Employment Survey Results

	Age (in Years)		
Employment Status	Less than $\mathbf{1 8}$	$\mathbf{1 8}$ or greater	Total
Has Job	20	587	607
Does Not Have Job	245	92	337
Total	265	679	944

a. What is the probability that a randomly selected person surveyed has a job, given that the person is less than 18 years old?
b. What is the probability that a randomly selected person surveyed has a job, given that the person is greater than or equal to 18 years old?
c. Are having a job (A) and being 18 or greater (B) independent events? Explain.

- $P(A)=$ has a job
- $P\left(A^{\prime}\right)=$ does not have a job
- $P(B)=18$ years old or greater
- $P\left(B^{\prime}\right)=$ less than 18 years old

Solution:

a. Find the total number of people surveyed less than 18 years old: $20+245=265$. Divide the number of people who have a job and are less than 18 years old, 20, by the number of people less than 18 years old, 265 : $\frac{20}{265} \approx 0.08$. The probability that a person surveyed has a job, given that the person is less than 18 years old, is about 0.08 .

$$
P\left(A \mid B^{\prime}\right)=\frac{P\left(A \text { and } B^{\prime}\right)}{P\left(B^{\prime}\right)}=\frac{\frac{20}{944}}{\frac{265}{944}}=\frac{20}{265}=0.08
$$

b. Find the total number of people surveyed greater than or equal to 18 years old: $587+92=679$. Divide the number of people who have a job and are greater than or equal to 18 years old, 587, by the number of people greater than or equal to 18 years old, $679: \frac{587}{679} \approx 0.86$. The probability that a person surveyed has a job, given that the person is greater than or equal to 18 years old, is about 0.86.

$$
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}=\frac{\frac{587}{944}}{\frac{679}{944}}=\frac{587}{679}=0.86
$$

c. The events are independent if $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$.

From part (b), $P(A \mid B) \approx 0.86$.
$P(A)=\frac{607}{944} \approx 0.64$
$P(A \mid B) \neq P(A)$, so the events are not independent.

