The probability that a randomly selected student will be a junior given that the student owns a car is  $\frac{1}{3}$ .

# **REVIEW EXAMPLES**

1. This table shows the names of students in Mr. Leary's class who do or do not own bicycles and skateboards.

| Bicycle and Skateboard Ownership |                      |                                     |                                            |  |
|----------------------------------|----------------------|-------------------------------------|--------------------------------------------|--|
| Owns a<br>Bicycle                | Owns a<br>Skateboard | Owns a<br>Bicycle AND<br>Skateboard | Does NOT Own<br>a Bicycle OR<br>Skateboard |  |
| Ryan                             | Brett                | Joe                                 | Amy                                        |  |
| Sarah                            | Juan                 | Mike                                | Gabe                                       |  |
| Mariko                           | Tobi                 | Linda                               | Abi                                        |  |
| Nina                             |                      | Rose                                |                                            |  |
| Dion                             |                      |                                     |                                            |  |

Let set A be the names of students who own bicycles, and let set B be the names of students who own skateboards.

- a. Find A and B. What does the set represent?
- b. Find A or B. What does the set represent?
- c. Find (A or B)'. What does the set represent?

#### Solution:

- a. The intersection is the set of elements that are common to both set *A* and set *B*, so *A* and *B* is {Joe, Mike, Linda, Rose}. This set represents the students who own both a bicycle and a skateboard.
- b. The union is the set of elements that are in set *A* or set *B* or in both set *A* and set *B*. You only need to list the names in the intersection one time, so *A* or *B* is {Ryan, Sarah, Mariko, Nina, Dion, Joe, Mike, Linda, Rose, Brett, Juan, Tobi}. This set represents the students who own a bicycle, a skateboard, or both.
- c. The complement of *A* or *B* is the set of names that are not in *A* or *B*. So, the complement of *A* or *B* is {Amy, Gabe, Abi}. This set represents the students who own neither a bicycle nor a skateboard.

2. In a certain town, the probability that a person plays sports is 65%. The probability that a person is between the ages of 12 and 18 is 40%. The probability that a person plays sports and is between the ages of 12 and 18 is 25%. Are the events independent? How do you know?

## Solution:

Let P(S) be the probability that a person plays sports.

Let P(A) be the probability that a person is between the ages of 12 and 18.

If the two events are independent, then  $P(S \text{ and } A) = P(S) \cdot P(A)$ .

Because P(S and A) is given as 25%, find  $P(S) \cdot P(A)$  and then compare.

$$P(S) \cdot P(A) = 0.65 \cdot 0.4$$

= 0.26

Because  $0.26 \neq 0.25$ , the events are not independent.

3. A random survey was conducted to gather information about age and employment status. This table shows the data that were collected.

# **Employment Survey Results**

|                   | Age (in Years) |               |       |
|-------------------|----------------|---------------|-------|
| Employment Status | Less than 18   | 18 or greater | Total |
| Has Job           | 20             | 587           | 607   |
| Does Not Have Job | 245            | 92            | 337   |
| Total             | 265            | 679           | 944   |

- **a.** What is the probability that a randomly selected person surveyed has a job, given that the person is less than 18 years old?
- **b.** What is the probability that a randomly selected person surveyed has a job, given that the person is greater than or equal to 18 years old?
- **c.** Are having a job (*A*) and being 18 or greater (*B*) independent events? Explain.
  - *P*(*A*) = has a job
  - P(A') = does not have a job
  - P(B) = 18 years old or greater
  - P(B') = less than 18 years old

### Solution:

**a.** Find the total number of people surveyed less than 18 years old: 20 + 245 = 265. Divide the number of people who have a job and are less than 18 years old, 20, by the number of people less than 18 years old,  $265: \frac{20}{265} \approx 0.08$ . The probability that a person surveyed has a job, given that the person is less than 18 years old, is about 0.08.

$$P(A \mid B') = \frac{P(A \text{ and } B')}{P(B')} = \frac{\frac{20}{944}}{\frac{265}{944}} = \frac{20}{265} = 0.08$$

**b.** Find the total number of people surveyed greater than or equal to 18 years old: 587 + 92 = 679. Divide the number of people who have a job and are greater than or equal to 18 years old, 587, by the number of people greater than or equal to 18 years old,  $679: \frac{587}{679} \approx 0.86$ . The probability that a person surveyed has a job, given that the person is greater than or equal to 18 years old, is about 0.86.

$$P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{\frac{587}{944}}{\frac{679}{944}} = \frac{587}{679} = 0.86$$

**c.** The events are independent if P(A | B) = P(A) and P(B | A) = P(B). From part (b),  $P(A | B) \approx 0.86$ .

$$P(A) = \frac{607}{944} \approx 0.64$$

 $P(A \mid B) \neq P(A)$ , so the events are not independent.