SAMPLE ITEMS

- 1. Which information is needed to show that a parallelogram is a rectangle?
 - A. The diagonals bisect each other.
 - **B.** The diagonals are congruent.
 - C. The diagonals are congruent and perpendicular.
 - **D.** The diagonals bisect each other and are perpendicular.

Correct Answer: B

- 2. Which point is on a circle with a center of (3, -9) and a radius of 5?
 - **A.** (-6, 5)
 - **B.** (-1, 6)
 - **C.** (1, 6)
 - **D.** (6, -5)

Correct Answer: D

3. Given the points P(2, -1) and Q(-9, -6), what are the coordinates of the point on directed line segment \overline{PQ} that partitions \overline{PQ} in the ratio $\frac{3}{2}$?

A.
$$\left(-\frac{23}{5}, -4\right)$$

B. $\left(-\frac{12}{5}, -3\right)$
C. $\left(\frac{5}{3}, \frac{8}{3}\right)$
D. $\left(-\frac{5}{3}, -\frac{8}{3}\right)$

Correct Answer: A

4. An equation of line *a* is $y = -\frac{1}{2}x - 2$.

Which is an equation of the line that is perpendicular to line a and passes through the point (-4, 0)?

A. $y = -\frac{1}{2}x + 2$ B. $y = -\frac{1}{2}x + 8$ C. y = 2x - 2D. y = 2x + 8

Correct Answer: D

5. Parallelogram ABCD has vertices as shown.

Which equation would be used in proving that the diagonals of parallelogram *ABCD* bisect each other?

A. $\sqrt{(3-1)^2 + (2-0)^2} = \sqrt{(1-3)^2 + (0+4)^2}$ B. $\sqrt{(3+1)^2 + (2+0)^2} = \sqrt{(1+3)^2 + (0-4)^2}$ C. $\sqrt{(-1-1)^2 + (4-0)^2} = \sqrt{(1-3)^2 + (0+4)^2}$ D. $\sqrt{(-1+1)^2 + (4+0)^2} = \sqrt{(1+3)^2 + (0-4)^2}$

Correct Answer: C

6. Triangle *ABC* has vertices as shown.

What is the area of the triangle?

- **A.** $\sqrt{72}$ square units
- B. 12 square units
- **C.** $\sqrt{288}$ square units
- D. 24 square units

Correct Answer: B