REVIEW EXAMPLES

1. What is the volume of the cone shown below?

Solution:

The diameter of the cone is 16 cm . So the radius is $16 \mathrm{~cm} \div 2=8 \mathrm{~cm}$. Use the Pythagorean theorem, $a^{2}+b^{2}=c^{2}$, to find the height of the cone. Substitute 8 for b and 17 for c and solve for a :

$$
\begin{aligned}
a^{2}+8^{2} & =17^{2} \\
a^{2}+64 & =289 \\
a^{2} & =225 \\
a & =15
\end{aligned}
$$

The formula for the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$. Substitute 8 for r and 15 for h :

$$
V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(8)^{2}(15)
$$

The volume is $320 \pi \mathrm{~cm}^{3}$.
2. A sphere has a radius of 3 feet. What is the volume of the sphere?

Solution:

The formula for the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$. Substitute 3 for r and solve.

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& V=\frac{4}{3} \pi(3)^{3} \\
& V=\frac{4}{3} \pi(27) \\
& V=36 \pi \mathrm{ft}^{3}
\end{aligned}
$$

3. A cylinder has a radius of 10 cm and a height of 9 cm . A cone has a radius of 10 cm and a height of 9 cm . Show that the volume of the cylinder is three times the volume of the cone.

Solution:

The formula for the volume of a cylinder is $V=\pi r^{2} h$. Substitute 10 for r and 9 for h :

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi(10)^{2}(9) \\
& =\pi(100)(9) \\
& =900 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

The formula for the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$. Substitute 10 for r and 9 for h :

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi(10)^{2}(9) \\
& =\frac{1}{3} \pi(100)(9) \\
& =300 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Divide: $900 \pi \div 300 \pi=3$
4. Cylinder A and Cylinder B are shown below. What is the volume of each cylinder?

Solution:

To find the volume of Cylinder A, use the formula for the volume of a cylinder, which is $V=\pi r^{2} h$. Divide the diameter by 2 to find the radius: $10 \div 2=5$. Substitute 5 for r and 12 for h :

$$
\begin{aligned}
V_{\text {Cylinder } \mathrm{A}} & =\pi r^{2} h \\
& =\pi(5)^{2}(12) \\
& =\pi(25)(12) \\
& =300 \pi \mathrm{~m}^{3} \\
& \approx 942 \mathrm{~m}^{3}
\end{aligned}
$$

Notice that Cylinder B has the same height and the same radius as Cylinder A. The only difference is that Cylinder B is slanted. For both cylinders, the cross section at every plane parallel to the bases is a circle with the same area. By Cavalieri's principle, the cylinders have the same volume; therefore, the volume of Cylinder B is $300 \pi \mathrm{~m}^{3}$, or about $942 \mathrm{~m}^{3}$.

Cylinder A

Cylinder B

