24. An *inscribed circle* is a circle enclosed in a polygon, where every side of the polygon is tangent to the circle. Specifically, when a circle is inscribed in a triangle, the center of the circle is the *incenter* of the triangle. The incenter is equidistant from the sides of the triangle. Circle *Q* is inscribed in triangle *ABC*, and point *Q* is the incenter of the triangle. Notice also that the sides of the triangle form circumscribed angles with the circle.

REVIEW EXAMPLES

1. $\angle PNQ$ is inscribed in circle *O* and $\widehat{mPQ} = 70^{\circ}$.

- a. What is the measure of $\angle POQ$?
- b. What is the relationship between $\angle POQ$ and $\angle PNQ$?
- c. What is the measure of $\angle PNQ$?

Solution:

- a. The measure of a central angle is equal to the measure of the intercepted arc. $m\angle POQ = mPQ = 70^{\circ}$.
- b. $\angle POQ$ is a central angle that intercepts \widehat{PQ} . $\angle PNQ$ is an inscribed angle that intercepts \widehat{PQ} . The measure of the central angle is equal to the measure of the intercepted arc. The measure of the inscribed angle is equal to one-half the measure of the intercepted arc. So $m\angle POQ = m\widehat{PQ}$ and $m\angle PNQ = \frac{1}{2}m\widehat{PQ}$, so $m\angle POQ = 2m\angle PNQ$.

c. From part (b), $m \angle POQ = 2m \angle PNQ$ Substitute: $70^\circ = 2m \angle PNQ$ Divide: $35^\circ = m \angle PNQ$ 2. In circle P below, \overline{AB} is a diameter.

If $m \angle APC = 100^\circ$, find the following:

- a. *m∠BPC*
- b. *m∠BAC*
- c. mBC
- d. mAC

Solution:

- a. $\angle APC$ and $\angle BPC$ are supplementary, so $m \angle BPC = 180^\circ m \angle APC$, so $m \angle BPC = 180^{\circ} - 100^{\circ} = 80^{\circ}$.
- b. $\angle BAC$ is an angle in $\triangle APC$. The sum of the measures of the angles of a triangle is 180°.

For $\triangle APC: m \angle APC + m \angle BAC + m \angle ACP = 180^{\circ}$

You are given that $m \angle APC = 100^\circ$.

Substitute: $100^{\circ} + m \angle BAC + m \angle ACP = 180^{\circ}$

Subtract 100° from both sides: $m \angle BAC + m \angle ACP = 80^\circ$

Because two sides of $\triangle APC$ are radii of the circle, $\triangle APC$ is an isosceles triangle. This means that the two base angles are congruent, so $m \angle BAC = m \angle ACP.$

Substitute: $m \angle BAC$ for $m \angle ACP$: $m \angle BAC + m \angle BAC = 80^{\circ}$

Add: $2m\angle BAC = 80^{\circ}$

Divide: $m \angle BAC = 40^{\circ}$

You could also use the answer from part (a) to solve for $m \angle BAC$. Part (a) shows $m\angle BPC = 80^{\circ}$.

Because the central angle measure is equal to the measure of the intercepted arc. $m \angle BPC = mBC = 80^\circ$.

Because an inscribed angle is equal to one-half the measure of the intercepted arc, $m \angle BAC = \frac{1}{2}m\widehat{BC}$. By substitution: $m \angle BAC = \frac{1}{2}(80^\circ)$

Georgia Milestones Geometry EOC Study/Resource Guide for Students and Parents

Therefore, $m \angle BAC = 40^{\circ}$.

c. $\angle BAC$ is an inscribed angle intercepting \overrightarrow{BC} . The intercepted arc is twice the measure of the inscribed angle.

 $mBC = 2m \angle BAC$

From part (b), $m \angle BAC = 40^{\circ}$.

Substitute: $\widehat{mBC} = 2 \cdot 40^{\circ}$

 $\widehat{mBC} = 80^{\circ}$

You could also use the answer from part (a) to solve. Part (a) shows $m \angle BPC = 80^\circ$. Because $\angle BPC$ is a central angle that intercepts \overrightarrow{BC} , $m \angle BPC = m\overrightarrow{BC} = 80^\circ$.

d. $\angle APC$ is a central angle intercepting \widehat{AC} . The measure of the intercepted arc is equal to the measure of the central angle.

 $\overrightarrow{mAC} = \overrightarrow{m} \angle APC$

You are given $m \angle APC = 100^{\circ}$.

Substitute: $\widehat{mAC} = 100^{\circ}$

3. In circle *P* below, \overline{DG} is a tangent. AF = 8, EF = 6, BF = 4, and EG = 8.

Find CF and DG.

Solution:

First, find CF. Use the fact that \overline{CF} is part of a pair of intersecting chords.

$$AF \cdot CF = EF \cdot BF$$
$$8 \cdot CF = 6 \cdot 4$$
$$8 \cdot CF = 24$$
$$CF = 3$$

Georgia Milestones Geometry EOC Study/Resource Guide for Students and Parents Copyright © 2017 by Georgia Department of Education. All rights reserved. Next, find *DG*. Use the fact that \overline{DG} is tangent to the circle.

$$EG \cdot BG = DG^{2}$$

$$8 \cdot (8+6+4) = DG^{2}$$

$$8 \cdot 18 = DG^{2}$$

$$144 = DG^{2}$$

$$\pm 12 = DG$$

$$12 = DG \text{ (since length cannot be negative)}$$

CF = 3 and DG = 12.

4. In this circle, \overline{AB} is tangent to the circle at point *B*, \overline{AC} is tangent to the circle at point *C*, and point *D* lies on the circle. What is $m \angle BAC$?

Solution:

Method 1

First, find the measure of angle *BOC*. Angle *BDC* is an inscribed angle, and angle *BOC* is a central angle.

 $m \angle BOC = 2 \bullet m \angle BDC$

= 2 • 48°

= 96°

Angle *BAC* is a circumscribed angle. Use the measure of angle *BOC* to find the measure of angle *BAC*.

Method 2

Angle *BDC* is an inscribed angle. First, find the measures of \widehat{BC} and \widehat{BDC} .

$$m \angle BDC = \frac{1}{2} \cdot m\widehat{BC}$$
$$48^{\circ} = \frac{1}{2} \cdot m\widehat{BC}$$
$$2 \cdot 48^{\circ} = m\widehat{BC}$$
$$96^{\circ} = m\widehat{BC}$$
$$m\widehat{BDC} = 360^{\circ} - m\widehat{BC}$$
$$= 360^{\circ} - 96^{\circ}$$
$$= 264^{\circ}$$

Angle *BAC* is a circumscribed angle. Use the measures of \overrightarrow{BC} and \overrightarrow{BDC} to find the measure of angle *BAC*.

$$m \angle BAC = \frac{1}{2} \left(m \widehat{BDC} - m \widehat{BC} \right)$$
$$= \frac{1}{2} \left(264^{\circ} - 96^{\circ} \right)$$
$$= \frac{1}{2} \left(168^{\circ} \right)$$
$$= 84^{\circ}$$