24. An inscribed circle is a circle enclosed in a polygon, where every side of the polygon is tangent to the circle. Specifically, when a circle is inscribed in a triangle, the center of the circle is the incenter of the triangle. The incenter is equidistant from the sides of the triangle. Circle Q is inscribed in triangle $A B C$, and point Q is the incenter of the triangle. Notice also that the sides of the triangle form circumscribed angles with the circle.

REVIEW EXAMPLES

1. $\angle P N Q$ is inscribed in circle O and $m \overparen{P Q}=70^{\circ}$.

a. What is the measure of $\angle P O Q$?
b. What is the relationship between $\angle P O Q$ and $\angle P N Q$?
c. What is the measure of $\angle P N Q$?

Solution:

a. The measure of a central angle is equal to the measure of the intercepted arc. $m \angle P O Q=m \overparen{P Q}=70^{\circ}$.
b. $\angle P O Q$ is a central angle that intercepts $\overparen{P Q}$. $\angle P N Q$ is an inscribed angle that intercepts $\overparen{P Q}$. The measure of the central angle is equal to the measure of the intercepted arc. The measure of the inscribed angle is equal to one-half the measure of the intercepted arc. So $m \angle P O Q=m \overparen{P Q}$ and $m \angle P N Q=\frac{1}{2} m \overparen{P Q}$, so $m \angle P O Q=2 m \angle P N Q$.
c. From part (b), $m \angle P O Q=2 m \angle P N Q$

Substitute: $\quad 70^{\circ}=2 m \angle P N Q$
Divide: $\quad 35^{\circ}=m \angle P N Q$
2. In circle P below, $\overline{A B}$ is a diameter.

If $m \angle A P C=100^{\circ}$, find the following:
a. $m \angle B P C$
b. $m \angle B A C$
c. $m \overparen{B C}$
d. $m \overparen{A C}$

Solution:

a. $\angle A P C$ and $\angle B P C$ are supplementary, so $m \angle B P C=180^{\circ}-m \angle A P C$, so $m \angle B P C=180^{\circ}-100^{\circ}=80^{\circ}$.
b. $\angle B A C$ is an angle in $\triangle A P C$. The sum of the measures of the angles of a triangle is 180°.

For $\triangle A P C$: $m \angle A P C+m \angle B A C+m \angle A C P=180^{\circ}$
You are given that $m \angle A P C=100^{\circ}$.
Substitute: $100^{\circ}+m \angle B A C+m \angle A C P=180^{\circ}$
Subtract 100° from both sides: $m \angle B A C+m \angle A C P=80^{\circ}$
Because two sides of $\triangle A P C$ are radii of the circle, $\triangle A P C$ is an isosceles
triangle. This means that the two base angles are congruent, so
$m \angle B A C=m \angle A C P$.
Substitute: $m \angle B A C$ for $m \angle A C P: m \angle B A C+m \angle B A C=80^{\circ}$
Add: $2 m \angle B A C=80^{\circ}$
Divide: $m \angle B A C=40^{\circ}$
You could also use the answer from part (a) to solve for $m \angle B A C$. Part (a) shows $m \angle B P C=80^{\circ}$.

Because the central angle measure is equal to the measure of the intercepted arc, $m \angle B P C=m \overparen{B C}=80^{\circ}$.

Because an inscribed angle is equal to one-half the measure of the intercepted arc, $m \angle B A C=\frac{1}{2} m \overparen{B C}$.
By substitution: $m \angle B A C=\frac{1}{2}\left(80^{\circ}\right)$

Therefore, $m \angle B A C=40^{\circ}$.
c. $\angle B A C$ is an inscribed angle intercepting $\overparen{B C}$. The intercepted arc is twice the measure of the inscribed angle.
$m \overparen{B C}=2 m \angle B A C$
From part (b), $m \angle B A C=40^{\circ}$.
Substitute: $m \overparen{B C}=2 \cdot 40^{\circ}$
$m \overparen{B C}=80^{\circ}$
You could also use the answer from part (a) to solve. Part (a) shows $m \angle B P C=80^{\circ}$. Because $\angle B P C$ is a central angle that intercepts $\overparen{B C}, m \angle B P C=m \overparen{B C}=80^{\circ}$.
d. $\angle A P C$ is a central angle intercepting $\overparen{A C}$. The measure of the intercepted arc is equal to the measure of the central angle.
$m \overparen{A C}=m \angle A P C$
You are given $m \angle A P C=100^{\circ}$.
Substitute: $m \overparen{A C}=100^{\circ}$
3. In circle P below, $\overline{D G}$ is a tangent. $A F=8, E F=6, B F=4$, and $E G=8$.

Find $C F$ and $D G$.

Solution:

First, find $C F$. Use the fact that $\overline{C F}$ is part of a pair of intersecting chords.

$$
\begin{aligned}
\mathrm{AF} \cdot \mathrm{CF} & =\mathrm{EF} \cdot \mathrm{BF} \\
8 \cdot C F & =6 \cdot 4 \\
8 \cdot C F & =24 \\
C F & =3
\end{aligned}
$$

Next, find $D G$. Use the fact that $\overline{D G}$ is tangent to the circle.

$$
\begin{aligned}
E G \cdot B G & =D G^{2} \\
8 \cdot(8+6+4) & =D G^{2} \\
8 \cdot 18 & =D G^{2} \\
144 & =D G^{2} \\
\pm 12 & =D G \\
12 & =D G \text { (since length cannot be negative) }
\end{aligned}
$$

$C F=3$ and $D G=12$.
4. In this circle, $\overline{A B}$ is tangent to the circle at point $B, \overline{A C}$ is tangent to the circle at point C, and point D lies on the circle. What is $m \angle B A C$?

Solution:

Method 1

First, find the measure of angle BOC. Angle BDC is an inscribed angle, and angle $B O C$ is a central angle.

$$
\begin{aligned}
m \angle B O C & =2 \cdot m \angle B D C \\
& =2 \cdot 48^{\circ} \\
& =96^{\circ}
\end{aligned}
$$

Angle $B A C$ is a circumscribed angle. Use the measure of angle BOC to find the measure of angle BAC.

$$
\begin{aligned}
m \angle B A C & =180^{\circ}-m \angle B O C \\
& =180^{\circ}-96^{\circ} \\
& =84^{\circ}
\end{aligned}
$$

Method 2

Angle $B D C$ is an inscribed angle. First, find the measures of $\overparen{B C}$ and $\overparen{B D C}$.

$$
\begin{aligned}
m \angle B D C & =\frac{1}{2} \cdot m \overparen{B C} \\
48^{\circ} & =\frac{1}{2} \cdot m \overparen{B C} \\
2 \cdot 48^{\circ} & =m \overparen{B C} \\
96^{\circ} & =m \overparen{B C} \\
m \overparen{B D C} & =360^{\circ}-m \overparen{B C} \\
& =360^{\circ}-96^{\circ} \\
& =264^{\circ}
\end{aligned}
$$

Angle $B A C$ is a circumscribed angle. Use the measures of $\overparen{B C}$ and $\overparen{B D C}$ to find the measure of angle BAC.

$$
\begin{aligned}
m \angle B A C & =\frac{1}{2}(m \overparen{B D C}-m \overparen{B C}) \\
& =\frac{1}{2}\left(264^{\circ}-96^{\circ}\right) \\
& =\frac{1}{2}\left(168^{\circ}\right) \\
& =84^{\circ}
\end{aligned}
$$

