SAMPLE ITEMS

1. In this diagram, $\overline{C D}$ is the perpendicular bisector of $\overline{A B}$. The two-column proof shows that $\overline{A C}$ is congruent to $\overline{B C}$.

Step	Statement	Justification
1	$\overline{C D}$ is the perpendicular bisector of $\overline{A B}$.	Given
2	$\overline{A D} \cong \overline{B D}$	Definition of bisector
3	$\overline{C D} \cong \overline{C D}$	Reflexive Property of Congruence
4	$\angle A D C$ and $\angle B D C$ are right angles.	Definition of perpendicular lines
5	$\angle A D C \cong \angle B D C$	All right angles are congruent.
6	$\triangle A D C \cong \triangle B D C$	$?$
7	$\overline{A C} \cong \overline{B C}$	CPCTC

Which of the following would justify Step 6?

A. AAS
B. ASA
C. SAS
D. SSS

Correct Answer: C

2. In this diagram, STU is an isosceles triangle where $\overline{S T}$ is congruent to $\overline{U T}$. The paragraph proof shows that $\angle S$ is congruent to $\angle U$.

It is given that $\overline{S T}$ is congruent to $\overline{U T}$. Draw $\overline{T V}$ such that V is on $\overline{S U}$ and $\overline{T V}$ bisects $\angle T$. By the definition of an angle bisector, $\angle S T V$ is congruent to $\angle U T V$. By the Reflexive Property of Congruence, $\overline{T V}$ is congruent to $\overline{T V}$.
Triangle STV is congruent to triangle UTV by SAS. $\angle S$ is congruent to $\angle U$ by \qquad

Which step is missing in the proof?
A. СРСТС
B. Reflexive Property of Congruence
C. Definition of right angles
D. Angle Congruence Postulate

Correct Answer: A

