REVIEW EXAMPLES

1. In this diagram, line m intersects line n.

Write a two-column proof to show that vertical angles $\angle 1$ and $\angle 3$ are congruent.

Solution:

Construct a proof using intersecting lines.

Step	Statement	Justification
1	Line m intersects line n.	Given
2	$\angle 1$ and $\angle 2$ form a linear pair. $\angle 2$ and $\angle 3$ form a linear pair.	Definition of a linear pair
3	$m \angle 1+m \angle 2=180^{\circ}$ $m \angle 2+m \angle 3=180^{\circ}$	Angles that form a linear pair have measures that sum to 180°.
4	$m \angle 1+m \angle 2=m \angle 2+m \angle 3$	Substitution
5	$m \angle 1=m \angle 3$	Subtraction Property of Equality
6	$\angle 1 \cong \angle 3$	Definition of congruent angles

2. In this diagram, $\overline{X Y}$ is parallel to $\overline{A C}$, and point B lies on $\overrightarrow{X Y}$.

Write a paragraph to prove that the sum of the angles in a triangle is 180°.

Solution:

$\overline{A C}$ and $\overline{X Y}$ are parallel, so $\overline{A B}$ is a transversal. The alternate interior angles formed by the transversal are congruent. So, $m \angle A=m \angle A B X$. Similarly, $\overline{B C}$ is a transversal, so $m \angle C=m \angle C B Y$. The sum of the angle measures that make a straight line is 180°.

So, $m \angle A B X+m \angle A B C+m \angle C B Y=180^{\circ}$. Now, substitute $m \angle A$ for $m \angle A B X$ and $m \angle C$ for $m \angle C B Y$ to get $m \angle A+m \angle A B C+m \angle C=180^{\circ}$.
3. In this diagram, $A B C D$ is a parallelogram and $\overline{B D}$ is a diagonal.

Write a two-column proof to show that $\overline{A B}$ and $\overline{C D}$ are congruent.

Solution:

Construct a proof using properties of the parallelogram and its diagonal.

Step	Statement	Justification
1	$A B C D$ is a parallelogram.	Given
2	$\overline{B D}$ is a diagonal.	Given
3	$\overline{A B}$ is parallel to $\overline{D C}$. $\overline{A D}$ is parallel to $\overline{B C}$.	Definition of parallelogram
4	$\begin{aligned} & \angle A B D \cong \angle C D B \\ & \angle D B C \cong \angle B D A \end{aligned}$	Alternate interior angles are congruent.
5	$\overline{B D} \cong \overline{B D}$	Reflexive Property of Congruence
6	$\triangle A D B \cong \triangle C B D$	ASA
7	$\overline{A B} \cong \overline{C D}$	CPCTC

Note: Corresponding parts of congruent triangles are congruent.

