REVIEW EXAMPLES

1. In this diagram, line *m* intersects line *n*.

Write a two-column proof to show that vertical angles $\angle 1$ and $\angle 3$ are congruent.

Solution:

Construct a proof using intersecting lines.

Step	Statement	Justification
1	Line <i>m</i> intersects line <i>n</i> .	Given
2	∠1 and ∠2 form a linear pair. ∠2 and ∠3 form a linear pair.	Definition of a linear pair
3	<i>m</i> ∠1 + <i>m</i> ∠2 = 180° <i>m</i> ∠2 + <i>m</i> ∠3 = 180°	Angles that form a linear pair have measures that sum to 180°.
4	$m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$	Substitution
5	<i>m</i> ∠1 = <i>m</i> ∠3	Subtraction Property of Equality
6	$\angle 1 \cong \angle 3$	Definition of congruent angles

2. In this diagram, \overrightarrow{XY} is parallel to \overrightarrow{AC} , and point *B* lies on \overrightarrow{XY} .

Write a paragraph to prove that the sum of the angles in a triangle is 180°.

Solution:

 \overline{AC} and \overline{XY} are parallel, so \overline{AB} is a transversal. The alternate interior angles formed by the transversal are congruent. So, $m \angle A = m \angle ABX$. Similarly, \overline{BC} is a transversal, so $m \angle C = m \angle CBY$. The sum of the angle measures that make a straight line is 180°.

So, $m \angle ABX + m \angle ABC + m \angle CBY = 180^\circ$. Now, substitute $m \angle A$ for $m \angle ABX$ and $m \angle C$ for $m \angle CBY$ to get $m \angle A + m \angle ABC + m \angle C = 180^\circ$.

3. In this diagram, *ABCD* is a parallelogram and \overline{BD} is a diagonal.

Write a two-column proof to show that \overline{AB} and \overline{CD} are congruent.

Solution:

Construct a proof using properties of the parallelogram and its diagonal.

Step	Statement	Justification
1	ABCD is a parallelogram.	Given
2	\overline{BD} is a diagonal.	Given
3	\overline{AB} is parallel to \overline{DC} . \overline{AD} is parallel to \overline{BC} .	Definition of parallelogram
4	$\angle ABD \cong \angle CDB$ $\angle DBC \cong \angle BDA$	Alternate interior angles are congruent.
5	$\overline{BD}\cong\overline{BD}$	Reflexive Property of Congruence
6	$\triangle ADB \cong \triangle CBD$	ASA
7	$\overline{AB} \cong \overline{CD}$	CPCTC

Note: Corresponding parts of congruent triangles are congruent.