REVIEW EXAMPLES

1. Is $\triangle A B C$ congruent to $\triangle M N P$? Explain.

(scale unit = 2)

Solution:

$\overline{A C}$ corresponds to $\overline{M P}$. Both segments are 6 units long. $\overline{B C}$ corresponds to $\overline{N P}$. Both segments are 9 units long. Angle C (the included angle of $\overline{A C}$ and $\overline{B C}$) corresponds to angle P (the included angle of $\overline{M P}$ and $\overline{N P}$). Both angles measure 90°. Because two sides and an included angle are congruent, the triangles are congruent by SAS.

Or, $\triangle A B C$ is a reflection of $\triangle M N P$ over the y-axis. This means that all of the corresponding sides and corresponding angles are congruent, so the triangles are congruent. (Reflections preserve angle measurement and lengths; therefore, corresponding angles and sides are congruent.)
2. Rectangle $W X Y Z$ has coordinates $W(1,2), X(3,2), Y(3,-3)$, and $Z(1,-3)$.
a. Graph the image of rectangle $W X Y Z$ after a rotation of 90° clockwise about the origin. Label the image $W^{\prime} X^{\prime} Y^{\prime} Z^{\prime}$.
b. Translate rectangle $W^{\prime} X^{\prime} Y^{\prime} Z^{\prime} 2$ units left and 3 units up.
c. Is rectangle $W X Y Z$ congruent to rectangle $W^{\prime \prime} X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$? Explain.

Solution:

a. For a 90° clockwise rotation about the origin, use the rule $(x, y) \rightarrow(y,-x)$.

$$
\begin{aligned}
& W(1,2) \rightarrow W^{\prime}(2,-1) \\
& X(3,2) \rightarrow X^{\prime}(2,-3) \\
& Y(3,-3) \rightarrow Y^{\prime}(-3,-3) \\
& Z(1,-3) \rightarrow Z^{\prime}(-3,-1)
\end{aligned}
$$

b. To translate rectangle $W^{\prime} X^{\prime} Y^{\prime} Z^{\prime} 2$ units left and 3 units up, use the rule $(x, y) \rightarrow(x-2, y+3)$.

$$
\begin{aligned}
& W^{\prime}(2,-1) \rightarrow W^{\prime \prime}(0,2) \\
& X^{\prime}(2,-3) \rightarrow X^{\prime \prime}(0,0) \\
& Y^{\prime}(-3,-3) \rightarrow Y^{\prime \prime}(-5,0) \\
& Z^{\prime}(-3,-1) \rightarrow Z^{\prime \prime}(-5,2)
\end{aligned}
$$

c. Rectangle $W^{\prime \prime} X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$ is the result of a rotation and a translation of rectangle $W X Y Z$. These are both rigid transformations, so the shape and the size of the original figure are unchanged. All of the corresponding parts of $W X Y Z$ and $W^{\prime \prime} X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$ are congruent, so $W X Y Z$ and $W^{\prime \prime} X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$ are congruent.

