REVIEW EXAMPLES

1. In the triangle shown, $\overline{A C} \| \overleftrightarrow{D E}$.

Prove that $\overleftrightarrow{D E}$ divides $\overline{A B}$ and $\overline{C B}$ proportionally.

Solution:

Step	Statement	Justification	
1	$\overrightarrow{A C} \\| \stackrel{\rightharpoonup}{D E}$	Given	
2	$\angle B D E \cong \angle B A C$	If two parallel lines are cut by a transversal, then corresponding angles are congruent.	
3	$\angle D B E \cong \angle A B C$	Reflexive Property of Congruence because they are the same angle	
4	$\triangle D B E \sim \triangle A B C$	Angle-Angle (AA) Similarity	
5	$\frac{B A}{B D}=\frac{B C}{B E}$	Corresponding sides of similar triangles are proportional.	
6	$\begin{aligned} & B D+D A=B A \\ & B E+E C=B C \end{aligned}$	Segment Addition Postulate	
7	$\frac{B D+D A}{B D}=\frac{B E+E C}{B E}$	Substitution	
8	$\frac{B D}{B D}+\frac{D A}{B D}=\frac{B E}{B E}+\frac{E C}{B E}$	Rewrite each fraction as a sum of two fractions.	
9	$1+\frac{D A}{B D}=1+\frac{E C}{B E}$	Simplify	
10	$\frac{D A}{B D}=\frac{E C}{B E}$	Subtraction Property of Equality	
11	$\stackrel{\rightharpoonup}{D E}$ divides $\overline{A B}$ and $\overline{C B}$ proportionally.	Definition of proportionality	

2. Gale is trying to prove the Pythagorean Theorem using similar triangles. Part of her proof is shown below.

Step	Statement	Justification
1	$\angle A B C \cong \angle B D C$	All right angles are congruent.
2	$\angle A C B \cong \angle B C D$	Reflexive Property of Congruence
3	$\triangle A B C \sim \triangle B D C$	Angle-Angle (AA) Similarity
4	$\frac{B C}{D C}=\frac{A C}{B C}$	Corresponding sides of similar triangles are proportional.
5	$B C^{2}=A C \cdot D C$	In a proportion, the product of the means equals the product of the extremes.
6	$\angle A B C \cong \angle A D B$	All right angles are congruent.
7	$\angle B A C \cong \angle D A B$	Reflexive Property of Congruence
8	$\triangle A B C \sim \triangle A D B$	Angle-Angle (AA) Similarity
9	$\frac{A B}{A D}=\frac{A C}{A B}$	Corresponding sides of similar triangles are proportional.
10	$A B^{2}=A C \bullet A D$	In a proportion, the product of the means equals the product of the extremes.

What should Gale do to finish her proof?

Solution:

Step	Statement	Justification
11	$A B^{2}+B C^{2}=A C \cdot A D+A C \cdot D C$	Addition Property of Equality
12	$A B^{2}+B C^{2}=A C(A D+D C)$	Distributive Property
13	$A C=A D+D C$	Segment Addition Postulate
14	$A B^{2}+B C^{2}=A C \cdot A C$	Substitution
15	$A B^{2}+B C^{2}=A C^{2}$	Definition of exponent

$A B^{2}+B C^{2}=A C^{2}$ is a statement of the Pythagorean Theorem, so Gale's proof is complete.

