REVIEW EXAMPLES

1. Draw a triangle with vertices at $A(0,1), B(-3,3)$, and $C(1,3)$. Dilate the triangle using a scale factor of 1.5 and a center of $(0,0)$. Sketch and name the dilated triangle $A^{\prime} B^{\prime} C^{\prime}$.

Solution:

Plot points $A(0,1), B(-3,3)$, and $C(1,3)$. Draw $\overline{A B}, \overline{A C}$, and $\overline{B C}$.

The center of dilation is the origin, so to find the coordinates of the image, multiply the coordinates of the pre-image by the scale factor 1.5.

Point $A^{\prime}:(1.5 \cdot 0,1.5 \cdot 1)=(0,1.5)$
Point $B^{\prime}:(1.5 \cdot(-3), 1.5 \cdot 3)=(-4.5,4.5)$
Point $C^{\prime}:(1.5 \cdot 1,1.5 \cdot 3)=(1.5,4.5)$
Plot points $A^{\prime}(0,1.5), B^{\prime}(-4.5,4.5)$, and $C^{\prime}(1.5,4.5)$. Draw $\overline{A^{\prime} B^{\prime}}, \overline{A^{\prime} C^{\prime}}$, and $\overline{B^{\prime} C^{\prime}}$.

Note: Since no part of the pre-image passes through the center of dilation, $\overline{B C} \| \overline{B^{\prime} C^{\prime}}$, $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$, and $\overline{A C} \| \overline{A^{\prime} C^{\prime}}$.
2. Line segment $C D$ is 5 inches long. If line segment $C D$ is dilated to form line segment $C^{\prime} D^{\prime}$ with a scale factor of 0.6 , what is the length of line segment $C^{\prime} D^{\prime}$?

Solution:

The ratio of the length of the image and the pre-image is equal to the scale factor.

$$
\frac{C^{\prime} D^{\prime}}{C D}=0.6
$$

Substitute 5 for $C D$.

$$
\frac{C^{\prime} D^{\prime}}{5}=0.6
$$

Solve for $C^{\prime} D^{\prime}$.
$C^{\prime} D^{\prime}=0.6 \cdot 5$
$C^{\prime} D^{\prime}=3$
The length of line segment $C^{\prime} D^{\prime}$ is 3 inches.
3. Figure $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a dilation of figure $A B C D$.

a. Determine the center of dilation.
b. Determine the scale factor of the dilation.
c. What is the relationship between the sides of the pre-image and the corresponding sides of the image?

Solution:

a. To find the center of dilation, draw lines connecting each corresponding vertex from the pre-image to the image. The lines meet at the center of dilation.

The center of dilation is $(4,2)$.
b. Find the ratios of the lengths of the corresponding sides.
$\frac{A^{\prime} B^{\prime}}{A B}=\frac{6}{12}=\frac{1}{2}$
$\frac{B^{\prime} C^{\prime}}{B C}=\frac{3}{6}=\frac{1}{2}$
$\frac{C^{\prime} D^{\prime}}{C D}=\frac{6}{12}=\frac{1}{2}$
$\frac{A^{\prime} D^{\prime}}{A D}=\frac{3}{6}=\frac{1}{2}$
The ratio for each pair of corresponding sides is $\frac{1}{2}$, so the scale factor is $\frac{1}{2}$.
c. Each side of the image is parallel to the corresponding side of its pre-image and is $\frac{1}{2}$ the length.
Note: Lines connecting corresponding points pass through the center of dilation.

