REVIEW EXAMPLES

1. Allan drew angle BCD.

- a. Copy angle *BCD*. List the steps you used to copy the angle. Label the copied angle *RTS*.
- b. Without measuring the angles, how can you show they are congruent to one another?

Solution:

a. Draw point T. Draw \overrightarrow{TS} .

Place the point of a compass on point *C*. Draw an arc. Label the intersection points X and Y. Keep the compass width the same, and place the point of the compass on point *T*. Draw an arc and label the intersection point *V*.

Place the point of the compass on point Y and adjust the width to point X. Then place the point of the compass on point V and draw an arc that intersects the first arc. Label the intersection point U.

Georgia Milestones Geometry EOC Study/Resource Guide for Students and Parents Copyright © 2017 by Georgia Department of Education. All rights reserved. Draw \overline{TU} and point R on \overline{TU} . Angle BCD has now been copied to form angle RTS.

b. Connect points X and Y and points U and V to form $\triangle XCY$ and $\triangle UTV$. \overline{CY} and \overline{TV} , \overline{XY} and \overline{UV} , and \overline{CX} and \overline{TU} are congruent because they were drawn with the same compass width. So, $\triangle XCY \cong \triangle UTV$ by SSS, and $\angle C \cong \angle T$ because congruent parts of congruent triangles are congruent.

2. Construct a line segment perpendicular to \overline{MN} from a point not on \overline{MN} . Explain the steps you used to make your construction.

Solution:

Draw a point *P* that is not on \overline{MN} . Place the compass point on point *P*. Draw an arc that intersects \overline{MN} at two points. Label the intersections points *Q* and *R*. Without changing the width of the compass, place the compass on point *Q* and draw an arc under \overline{MN} . Place the compass on point *R* and draw another arc under \overline{MN} . Label the intersection point *S*. Draw \overline{PS} . Segment \overline{PS} is perpendicular to and bisects \overline{MN} .

3. Construct equilateral $\triangle HIJ$ inscribed in circle *K*. Explain the steps you used to make your construction.

Solution:

(This is an alternate method from the method shown in Key Idea 7.) Draw circle *K*. Draw segment \overline{FG} through the center of circle *K*. Label the points where \overline{FG} intersects circle *K* as points *I* and *P*. Using the compass setting you used when drawing the circle, place a compass on point *P* and draw an arc passing through point *K*. Label the points where the arc intersects circle *K* as points *H* and *J*. Draw \overline{HJ} , \overline{JJ} , and \overline{HI} . Triangle HIJ is an equilateral triangle inscribed in circle *K*.

