REVIEW EXAMPLES

1. Allan drew angle $B C D$.

a. Copy angle BCD. List the steps you used to copy the angle. Label the copied angle RTS.
b. Without measuring the angles, how can you show they are congruent to one another?

Solution:

a. Draw point T. Draw $\overrightarrow{T S}$.

Place the point of a compass on point C. Draw an arc. Label the intersection points X and Y. Keep the compass width the same, and place the point of the compass on point T. Draw an arc and label the intersection point V.

Place the point of the compass on point Y and adjust the width to point X. Then place the point of the compass on point V and draw an arc that intersects the first arc. Label the intersection point U.

Draw $\overrightarrow{T U}$ and point R on $\overrightarrow{T U}$. Angle $B C D$ has now been copied to form angle RTS.

b. Connect points X and Y and points U and V to form $\triangle X C Y$ and $\triangle U T V . \overline{C Y}$ and $\overline{T V}, \overline{X Y}$ and $\overline{U V}$, and $\overline{C X}$ and $\overline{T U}$ are congruent because they were drawn with the same compass width. So, $\triangle X C Y \cong \triangle U T V$ by SSS , and $\angle C \cong \angle T$ because congruent parts of congruent triangles are congruent.

2. Construct a line segment perpendicular to $\overline{M N}$ from a point not on $\overline{M N}$. Explain the steps you used to make your construction.

$$
M \curvearrowleft \longrightarrow
$$

Solution:

Draw a point P that is not on $\overline{M N}$. Place the compass point on point P. Draw an arc that intersects $\overline{M N}$ at two points. Label the intersections points Q and R. Without changing the width of the compass, place the compass on point Q and draw an arc under $\overline{M N}$. Place the compass on point R and draw another arc under $\overline{M N}$. Label the intersection point S. Draw $\overline{P S}$. Segment $P S$ is perpendicular to and bisects $\overline{M N}$.

3. Construct equilateral $\triangle H J$ inscribed in circle K. Explain the steps you used to make your construction.

Solution:

(This is an alternate method from the method shown in Key Idea 7.) Draw circle K. Draw segment $\overline{F G}$ through the center of circle K. Label the points where $\overline{F G}$ intersects circle K as points I and P. Using the compass setting you used when drawing the circle, place a compass on point P and draw an arc passing through point K. Label the points where the arc intersects circle K as points H and J. Draw $\overline{H J}, \overline{I J}$, and $\overline{H I}$. Triangle $H I J$ is an equilateral triangle inscribed in circle K.

