REVIEW EXAMPLES

1. Draw the image of each figure, using the given transformation.
a.

Use the translation $(x, y) \rightarrow(x-3, y+1)$.
c.

Reflect across the line $y=x$.
b.

Reflect across the x-axis.
d.

Identify the vertices. The reflection image of each point (x, y) across the line $y=-x$ is $(-y,-x)$.

Solution:

Identify the vertex and a point on each side of the angle. Translate each point 3 units left and 1 unit up. The image of given $\angle H J K$ is $\angle H^{\prime} J^{\prime} K^{\prime}$.
c.

Identify the vertices. The reflection image of each point (x, y) across the line $y=x$ is (y, x).
b.

Identify the vertices. The reflection image of each point (x, y) across the x-axis is $(x,-y)$.

The image of given polygon $P Q R S$ is $P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$, where P and P^{\prime} are the same.
d.

Identify the vertices. The reflection image of each point (x, y) across the line $y=-x$ is $(-y,-x)$.
2. Specify a sequence of transformations that will map $A B C D$ to $P Q R S$ in each case.
a.

b.

Solution:

Translate $A B C D$ down 5 units to obtain $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Then rotate $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ clockwise 90° about point B^{\prime} to obtain PQRS.

Reflect $A B C D$ across the line $x=2$ to obtain $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Then rotate $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ 180° about point A^{\prime} to obtain $P Q R S$.

Note that A^{\prime} and P are the same point.

Note that there are other sequences of transformations that will also work for each case.

Important Tip

2. A 180° rotation clockwise is equivalent to a 180° rotation counterclockwise.
3. Describe every transformation that maps each given figure to itself.

a.
b.

Solution:

a.

There is only one transformation: Reflect the figure across the line $y=-1$.

There are three transformations:

- reflect across the line $y=1$, or
- reflect across the line $x=-2$, or
- rotate 180° about the point $(-2,1)$.

4. Describe every transformation that maps this figure to itself: a regular hexagon (6 sides) that is centered about the origin and that has a vertex at (4,0).

Solution:

The angle formed by any two consecutive vertices and the center of the hexagon measures 60° because $\frac{360^{\circ}}{6}=60^{\circ}$. So a rotation about the origin, clockwise or counterclockwise, of $60^{\circ}, 120^{\circ}$, or any other multiple of 60° maps the hexagon to itself.

If a reflection across a line maps a figure to itself, then that line is called a line of symmetry.

A regular hexagon has 6 lines of symmetry: 3 lines through opposite vertices and 3 lines through midpoints of opposite sides.

A reflection across any of the 6 lines of symmetry maps the hexagon to itself.

